Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Piétri-Rouxel, C. Gentil, S. Vassilopoulos, D. Baas, E. Mouisel, A. Ferry, A. Vignaud, C. Hourde, I. Marty, L. Schaeffer, T. Voit, Luis Garcia (2010)
DHPR α1S subunit controls skeletal muscle mass and morphogenesisThe EMBO Journal, 29
R. Hunter, S. Kandarian (2004)
Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy.The Journal of clinical investigation, 114 10
S. Bodine, T. Stitt, Michael Gonzalez, W. Kline, Gretchen Stover, Roy Bauerlein, Elizabeth Zlotchenko, A. Scrimgeour, J. Lawrence, D. Glass, G. Yancopoulos (2001)
Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivoNature Cell Biology, 3
Robert White, Anne-Sophie Biérinx, V. Gnocchi, P. Zammit (2010)
Dynamics of muscle fibre growth during postnatal mouse developmentBMC Developmental Biology, 10
G. Pallafacchina, B. Blaauw, S. Schiaffino (2013)
Role of satellite cells in muscle growth and maintenance of muscle mass.Nutrition, metabolism, and cardiovascular diseases : NMCD, 23 Suppl 1
Fawzi Kadi (2008)
Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancementBritish Journal of Pharmacology, 154
Serhiy Pankiv, T. Clausen, T. Lamark, A. Brech, J. Bruun, Heidi Outzen, Aud Øvervatn, G. Bjørkøy, T. Johansen (2007)
p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy*Journal of Biological Chemistry, 282
A. Durieux, A. Amirouche, S. Banzet, N. Koulmann, R. Bonnefoy, M. Pasdeloup, C. Mouret, X. Bigard, A. Peinnequin, D. Freyssenet (2007)
Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression.Endocrinology, 148 7
C. Dogra, Harish Changoua, Nia Wedhas, X. Qin, J. Wergedal, Ashok Kumar (2007)
TNF‐related weak inducer of apoptosis (TWEAK) is a potent skeletal muscle‐wasting cytokineThe FASEB Journal, 21
S. Levine, Taitan Nguyen, N. Taylor, M. Friscia, M. Budak, P. Rothenberg, Jianliang Zhu, R. Sachdeva, S. Sonnad, L. Kaiser, N. Rubinstein, S. Powers, J. Shrager (2008)
Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans.The New England journal of medicine, 358 13
C. Mammucari, G. Milan, V. Romanello, E. Masiero, Ruediger Rudolf, P. Piccolo, S. Burden, R. Lisi, C. Sandri, Jinghui Zhao, A. Goldberg, S. Schiaffino, M. Sandri (2007)
FoxO3 controls autophagy in skeletal muscle in vivo.Cell metabolism, 6 6
K. Nakashima, Y. Yakabe (2007)
AMPK Activation Stimulates Myofibrillar Protein Degradation and Expression of Atrophy-Related Ubiquitin Ligases by Increasing FOXO Transcription Factors in C2C12 MyotubesBioscience, Biotechnology, and Biochemistry, 71
C. Álvaro, T. Teruel, Rosario Hernández, M. Lorenzo (2004)
Tumor Necrosis Factor α Produces Insulin Resistance in Skeletal Muscle by Activation of Inhibitor κB Kinase in a p38 MAPK-dependent Manner*Journal of Biological Chemistry, 279
N. Bello, N. Bello, Isabelle Lamsoul, Isabelle Lamsoul, Mélina Heuzé, Mélina Heuzé, Mélina Heuzé, Arnaud Métais, Arnaud Métais, Guenièvre Moreaux, Guenièvre Moreaux, D. Calderwood, D. Duprez, D. Duprez, C. Moog‐Lutz, C. Moog‐Lutz, C. Moog‐Lutz, P. Lutz, P. Lutz (2009)
The E3 ubiquitin ligase specificity subunit ASB2β is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradationCell Death and Differentiation, 16
M. Sandri (2008)
Signaling in muscle atrophy and hypertrophy.Physiology, 23
Jun Shi, Liqing Luo, J. Eash, C. Ibebunjo, D. Glass (2011)
The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling.Developmental cell, 21 5
John Cunningham, J. Rodgers, Daniel Arlow, F. Vazquez, V. Mootha, P. Puigserver (2007)
mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complexNature, 450
E. Small, Jason O’Rourke, V. Moresi, L. Sutherland, John McAnally, R. Gerard, J. Richardson, E. Olson (2010)
Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486Proceedings of the National Academy of Sciences, 107
Shijie Li, M. Czubryt, John McAnally, R. Bassel-Duby, J. Richardson, F. Wiebel, A. Nordheim, E. Olson (2005)
Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice.Proceedings of the National Academy of Sciences of the United States of America, 102 4
J. Ruas, James White, Rajesh Rao, Sandra Kleiner, Kevin T. Brannan, B. Harrison, N. Greene, Jun Wu, J. Estall, B. Irving, Ian Lanza, K. Rasbach, M. Okutsu, K. Nair, Zhen Yan, L. Leinwand, B. Spiegelman (2012)
A PGC-1α Isoform Induced by Resistance Training Regulates Skeletal Muscle HypertrophyCell, 151
W. Kline, Frank Panaro, Hayung Yang, S. Bodine (2007)
Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol.Journal of applied physiology, 102 2
M. Komatsu, S. Waguri, M. Koike, Yu-Shin Sou, T. Ueno, Taichi Hara, N. Mizushima, Jun-ichi Iwata, J. Ezaki, S. Murata, J. Hamazaki, Y. Nishito, S. Iemura, T. Natsume, T. Yanagawa, Junya Uwayama, E. Warabi, H. Yoshida, T. Ishii, A. Kobayashi, Masayuki Yamamoto, Zhenyu Yue, Y. Uchiyama, E. Kominami, Keiji Tanaka (2007)
Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient MiceCell, 131
Fabio Demontis, N. Perrimon (2010)
FOXO/4E-BP Signaling in Drosophila Muscles Regulates Organism-wide Proteostasis during AgingCell, 143
R. Piccirillo, A. Goldberg (2012)
The p97/VCP ATPase is critical in muscle atrophy and the accelerated degradation of muscle proteinsThe EMBO Journal, 31
S. Lecker, R. Jagoe, A. Gilbert, Marcelo Gomes, V. Baracos, J. Bailey, S. Price, W. Mitch, A. Goldberg (2004)
Multiple types of skeletal muscle atrophy involve a common program of changes in gene expressionThe FASEB Journal, 18
V. Moresi, M. Carrer, Chad Grueter, O. Rifki, J. Shelton, J. Richardson, R. Bassel-Duby, E. Olson (2012)
Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in miceProceedings of the National Academy of Sciences, 109
P. Sundaram, Zhiyu Pang, M. Miao, Lu Yu, S. Wing (2009)
USP19-deubiquitinating enzyme regulates levels of major myofibrillar proteins in L6 muscle cells.American journal of physiology. Endocrinology and metabolism, 297 6
R. Zoncu, L. Bar-Peled, A. Efeyan, Shuyu Wang, Y. Sancak, D. Sabatini (2011)
mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPaseScience, 334
C. Rommel, S. Bodine, B. Clarke, Roni Rossman, L. Nuñez, T. Stitt, G. Yancopoulos, D. Glass (2001)
Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathwaysNature Cell Biology, 3
C. Maltin, M. Delday (1992)
Satellite cells in innervated and denervated muscles treated with clenbuterolMuscle & Nerve, 15
T. Geng, Ping Li, Xinhe Yin, Zhen Yan (2011)
PGC-1 (cid:1) Promotes Nitric Oxide Antioxidant Defenses and Inhibits FOXO Signaling Against Cardiac Cachexia in Mice
Shenhav Cohen, J. Brault, S. Gygi, D. Glass, D. Valenzuela, C. Gartner, E. Latres, A. Goldberg (2009)
During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylationThe Journal of Cell Biology, 185
I. Remy, Annie Montmarquette, S. Michnick (2004)
PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3Nature Cell Biology, 6
N. Shimizu, N. Yoshikawa, N. Ito, T. Maruyama, Yuko Suzuki, S. Takeda, J. Nakae, Y. Tagata, Shinobu Nishitani, K. Takehana, M. Sano, K. Fukuda, M. Suematsu, C. Morimoto, Hirotoshi Tanaka (2011)
Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle.Cell metabolism, 13 2
G. Bothe, J. Haspel, Cynthia Smith, Heidi Wiener, S. Burden (2000)
Selective expression of Cre recombinase in skeletal muscle fibersgenesis, 26
A. Csibi, K. Cornille, M. Leibovitch, A. Poupon, L. Tintignac, Anthony Sanchez, S. Leibovitch (2010)
The Translation Regulatory Subunit eIF3f Controls the Kinase-Dependent mTOR Signaling Required for Muscle Differentiation and Hypertrophy in MousePLoS ONE, 5
R. Hunter, S. Kandarian (2004)
Disruption of either the Nfkb 1 or the Bcl 3 gene inhibits skeletal muscle atrophy
Michael O'Leary, A. Vainshtein, S. Iqbal, Olga Ostojic, D. Hood (2013)
Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle.American journal of physiology. Cell physiology, 304 5
J. Bruusgaard, Ida Johansen, I. Egner, Zaheer Rana, Kristian Gundersen (2010)
Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detrainingProceedings of the National Academy of Sciences, 107
M. Sandri (2010)
Autophagy in skeletal muscleFEBS Letters, 584
Mahroo Mofarrahi, I. Sigala, Yeting Guo, R. Godin, E. Davis, B. Petrof, M. Sandri, Y. Burelle, S. Hussain (2012)
Autophagy and Skeletal Muscles in SepsisPLoS ONE, 7
J. Lee, A. Budanov, E. Park, R. Birse, Teddy Kim, G. Perkins, K. Ocorr, Mark Ellisman, R. Bodmer, E. Bier, M. Karin (2010)
Sestrin as a Feedback Inhibitor of TOR That Prevents Age-Related PathologiesScience, 327
Yasutomi Kamei, S. Miura, Miki Suzuki, Y. Kai, J. Mizukami, T. Taniguchi, K. Mochida, Tomoko Hata, J. Matsuda, H. Aburatani, I. Nishino, O. Ezaki (2004)
Skeletal Muscle FOXO1 (FKHR) Transgenic Mice Have Less Skeletal Muscle Mass, Down-regulated Type I (Slow Twitch/Red Muscle) Fiber Genes, and Impaired Glycemic Control*[boxs]Journal of Biological Chemistry, 279
V. Horsley, Katie Jansen, S. Mills, G. Pavlath (2003)
IL-4 Acts as a Myoblast Recruitment Factor during Mammalian Muscle GrowthCell, 113
Andrew Judge, A. Koncarevic, R. Hunter, H. Liou, Robert Jackman, S. Kandarian (2007)
Role for IκBα, but not c-Rel, in skeletal muscle atrophyAmerican Journal of Physiology-cell Physiology, 292
R. Sartori, G. Milan, M. Patron, C. Mammucari, B. Blaauw, Reimar Abraham, M. Sandri (2009)
Smad2 and 3 transcription factors control muscle mass in adulthood.American journal of physiology. Cell physiology, 296 6
A. Mittal, Shephali Bhatnagar, Akhilesh Kumar, E. Lach‐Trifilieff, Sandrine Wauters, Hong Li, Denys Makonchuk, David Glass, Ashok Kumar (2010)
The TWEAK–Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in miceThe Journal of Cell Biology, 188
J. Peterson, Nadine Bakkar, D. Guttridge (2011)
NF-κB signaling in skeletal muscle health and disease.Current topics in developmental biology, 96
P. Paul, Sanjay Gupta, Shephali Bhatnagar, S. Panguluri, B. Darnay, Yongwon Choi, Ashok Kumar (2010)
Targeted ablation of TRAF6 inhibits skeletal muscle wasting in miceThe Journal of Cell Biology, 191
H. Argadine, N. Hellyer, C. Mantilla, W. Zhan, G. Sieck (2009)
The effect of denervation on protein synthesis and degradation in adult rat diaphragm muscle.Journal of applied physiology, 107 2
V. Romanello, E. Guadagnin, Lígia Gomes, I. Roder, C. Sandri, Yvonne Petersen, G. Milan, E. Masiero, P. Piccolo, M. Foretz, L. Scorrano, R. Rudolf, M. Sandri (2010)
Mitochondrial fission and remodelling contributes to muscle atrophyThe EMBO Journal, 29
Derek Narendra, R. Youle (2011)
Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control.Antioxidants & redox signaling, 14 10
Se-Jin Lee, Thanh Huynh, Yun‐Sil Lee, S. Sebald, Sarah Wilcox-Adelman, N. Iwamori, Christoph Lepper, M. Matzuk, C. Fan (2012)
Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathwayProceedings of the National Academy of Sciences, 109
B. Aravamudan, C. Mantilla, W. Zhan, G. Sieck (2006)
Denervation effects on myonuclear domain size of rat diaphragm fibers.Journal of applied physiology, 100 5
Eijiro Yamada, C. Bastie, H. Koga, Yichen Wang, A. Cuervo, J. Pessin (2012)
Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway.Cell reports, 1 5
R. Olson (1971)
MECHANISMS CONTROLLING THE
S. Lokireddy, I. Wijesoma, S. Sze, C. McFarlane, R. Kambadur, Mridula Sharma (2012)
Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting.American journal of physiology. Cell physiology, 303 5
R. Youle, Derek Narendra (2010)
Mechanisms of mitophagyNature Reviews Molecular Cell Biology, 12
R. Southgate, Bronwyn Neill, O. Prelovsek, A. El-Osta, Yasutomi Kamei, S. Miura, O. Ezaki, T. Mcloughlin, Wenwei Zhang, T. Unterman, M. Febbraio (2007)
FOXO1 Regulates the Expression of 4E-BP1 and Inhibits mTOR Signaling in Mammalian Skeletal Muscle*Journal of Biological Chemistry, 282
S. Meer, R. Jaspers, H. Degens (2011)
Is the myonuclear domain size fixed?Journal of musculoskeletal & neuronal interactions, 11 4
V. Moresi, Andrew Williams, Eric Meadows, Jesse Flynn, Matthew Potthoff, J. McAnally, J. Shelton, J. Backs, W. Klein, J. Richardson, R. Bassel-Duby, E. Olson (2010)
Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin LigasesCell, 143
J. Sacheck, A. Ohtsuka, S. McLary, A. Goldberg (2004)
IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1.American journal of physiology. Endocrinology and metabolism, 287 4
A. Guerci, C. Lahoute, S. Hébrard, Laura Collard, D. Graindorge, M. Favier, N. Cagnard, S. Batonnet-Pichon, G. Précigout, Luis Garcia, D. Tuil, D. Daegelen, A. Sotiropoulos (2012)
Srf-dependent paracrine signals produced by myofibers control satellite cell-mediated skeletal muscle hypertrophy.Cell metabolism, 15 1
L. Combaret, O. Adegoke, N. Bédard, V. Baracos, D. Attaix, S. Wing (2005)
USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states.American journal of physiology. Endocrinology and metabolism, 288 4
P. Puigserver, Zhidan Wu, Cheol Park, R. Graves, M. Wright, B. Spiegelman (1998)
A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive ThermogenesisCell, 92
R. Crameri, H. Langberg, P. Magnusson, C. Jensen, H. Schrøder, J. Olesen, C. Suetta, B. Teisner, M. Kjaer (2004)
Changes in satellite cells in human skeletal muscle after a single bout of high intensity exerciseThe Journal of Physiology, 558
T. Zimmers, M. Davies, L. Koniaris, Paul Haynes, A. Esquela, K. Tomkinson, A. Mcpherron, N. Wolfman, Se-Jin Lee (2002)
Induction of Cachexia in Mice by Systemically Administered MyostatinScience, 296
F. Grand, A. Jones, V. Seale, A. Scimè, M. Rudnicki (2009)
Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells.Cell stem cell, 4 6
N. Mizushima, M. Komatsu (2011)
Autophagy: Renovation of Cells and TissuesCell, 147
J. Bruusgaard, K. Gundersen (2008)
In vivo time-lapse microscopy reveals no loss of murine myonuclei during weeks of muscle atrophy.The Journal of clinical investigation, 118 4
Stefano Ciciliot, S. Schiaffino (2010)
Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications.Current pharmaceutical design, 16 8
Hui-Hua Li, V. Kedar, Chunlian Zhang, Holly McDonough, R. Arya, Da-Zhi Wang, C. Patterson (2004)
Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex.The Journal of clinical investigation, 114 8
A. Raffaello, G. Milan, E. Masiero, S. Carnio, Donghoon Lee, G. Lanfranchi, A. Goldberg, M. Sandri (2010)
JunB transcription factor maintains skeletal muscle mass and promotes hypertrophyThe Journal of Cell Biology, 191
Yasuhiro Izumiya, T. Hopkins, C. Morris, Kaori Sato, Ling Zeng, J. Viereck, J. Hamilton, N. Ouchi, N. LeBrasseur, K. Walsh (2008)
Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice.Cell metabolism, 7 2
M. Menconi, M. Fareed, P. O’Neal, V. Poylin, Wei Wei, P. Hasselgren (2007)
Role of glucocorticoids in the molecular regulation of muscle wastingCritical Care Medicine, 35
J. Fielitz, Mi-Sung Kim, J. Shelton, Shuaib Latif, J. Spencer, D. Glass, J. Richardson, R. Bassel-Duby, E. Olson (2007)
Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3.The Journal of clinical investigation, 117 9
T. Hornberger, W. Chu, Y. Mak, Jenny Hsiung, S. Huang, S. Chien (2006)
The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle.Proceedings of the National Academy of Sciences of the United States of America, 103 12
Sharon Blättler, John Cunningham, Francisco Verdeguer, H. Chim, W. Haas, Huifei Liu, Klaas Romanino, M. Rüegg, S. Gygi, Yang Shi, P. Puigserver (2012)
Yin Yang 1 deficiency in skeletal muscle protects against rapamycin-induced diabetic-like symptoms through activation of insulin/IGF signaling.Cell metabolism, 15 4
Seoung Lee, G. Dai, Zhaoyong Hu, Xiaonan Wang, Jie Du, W. Mitch (2004)
Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin-proteasome systems by phosphatidylinositol 3 kinase.Journal of the American Society of Nephrology : JASN, 15 6
F. Moss, C. Leblond (1971)
Satellite cells as the source of nuclei in muscles of growing ratsThe Anatomical Record, 170
S. Schiaffino, C. Mammucari (2011)
Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic modelsSkeletal Muscle, 1
S. Bodine (2006)
mTOR signaling and the molecular adaptation to resistance exercise.Medicine and science in sports and exercise, 38 11
O. Bacquer, E. Petroulakis, S. Paglialunga, F. Poulin, D. Richard, K. Cianflone, N. Sonenberg (2007)
Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2.The Journal of clinical investigation, 117 2
J. Maltzahn, J. Renaud, G. Parise, M. Rudnicki (2012)
Wnt7a treatment ameliorates muscular dystrophyProceedings of the National Academy of Sciences, 109
M. Laplante, D. Sabatini (2012)
mTOR Signaling in Growth Control and DiseaseCell, 149
D. Cai, J. Frantz, N. Tawa, P. Meléndez, Byung-Chul Oh, H. Lidov, P. Hasselgren, W. Frontera, Jongsoon Lee, D. Glass, S. Shoelson (2004)
IKKβ/NF-κB Activation Causes Severe Muscle Wasting in MiceCell, 119
M. Sandri, C. Sandri, A. Gilbert, C. Skurk, E. Calabria, A. Picard, K. Walsh, S. Schiaffino, S. Lecker, A. Goldberg (2004)
Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle AtrophyCell, 117
J. Brault, J. Jespersen, A. Goldberg (2010)
Peroxisome Proliferator-activated Receptor γ Coactivator 1α or 1β Overexpression Inhibits Muscle Protein Degradation, Induction of Ubiquitin Ligases, and Disuse Atrophy*The Journal of Biological Chemistry, 285
C. Goodman, J. Frey, Danielle Mabrey, Brittany Jacobs, Hannah Lincoln, Jae-Sung You, T. Hornberger (2011)
The role of skeletal muscle mTOR in the regulation of mechanical load‐induced growthThe Journal of Physiology, 589
P. Nagpal, P. Plant, Judy Correa, A. Bain, Michiko Takeda, H. Kawabe, D. Rotin, James Bain, J. Batt (2012)
The Ubiquitin Ligase Nedd4-1 Participates in Denervation-Induced Skeletal Muscle Atrophy in MicePLoS ONE, 7
Daniel Calnan, A. Brunet (2008)
The FoxO codeOncogene, 27
Haolong Cong, Lunquan Sun, Changmei Liu, P. Tien (2011)
Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice.Human gene therapy, 22 3
D. Waddell, Leslie Baehr, J. Brandt, S. Johnsen, H. Reichardt, J. Furlow, S. Bodine (2008)
The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene.American journal of physiology. Endocrinology and metabolism, 295 4
S. Monier, A. Cam, Y. Marchand-Brustel (1983)
Insulin and Insulin-like Growth Factor I: Effects on Protein Synthesis in Isolated Muscles from Lean and Goldthioglucose-Obese MiceDiabetes, 32
R. Koopman, S. Gehrig, B. Léger, J. Trieu, S. Walrand, K. Murphy, G. Lynch (2010)
Cellular mechanisms underlying temporal changes in skeletal muscle protein synthesis and breakdown during chronic β‐adrenoceptor stimulation in miceThe Journal of Physiology, 588
Stefano Schiaffino, S. Bormioli, M. Aloisi (1972)
Cell proliferation in rat skeletal muscle during early stages of compensatory hypertrophyVirchows Archiv B, 11
S. Kalista, O. Schakman, H. Gilson, P. Lause, B. Demeulder, Luc Bertrand, Mario Pende, J. Thissen (2012)
The type 1 insulin-like growth factor receptor (IGF-IR) pathway is mandatory for the follistatin-induced skeletal muscle hypertrophy.Endocrinology, 153 1
P. Paul, Shephali Bhatnagar, V. Mishra, S. Srivastava, B. Darnay, Yongwon Choi, Ashok Kumar (2012)
The E3 Ubiquitin Ligase TRAF6 Intercedes in Starvation-Induced Skeletal Muscle Atrophy through Multiple MechanismsMolecular and Cellular Biology, 32
V. Arndt, Nikolaus Dick, Riga Tawo, Michael Dreiseidler, D. Wenzel, M. Hesse, D. Fürst, P. Saftig, R. Saint, B. Fleischmann, M. Hoch, J. Höhfeld (2010)
Chaperone-Assisted Selective Autophagy Is Essential for Muscle MaintenanceCurrent Biology, 20
Shenhav Cohen, B. Zhai, S. Gygi, A. Goldberg (2012)
Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophyThe Journal of Cell Biology, 198
C. Bentzinger, Klaas Romanino, Dimitri Cloëtta, Shuo Lin, J. Mascarenhas, Filippo Oliveri, Jinyu Xia, E. Casanova, Céline Costa, M. Brink, F. Zorzato, Michael Hall, M. Rüegg (2008)
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy.Cell metabolism, 8 5
Xiaolan Zhou, Jin Wang, John Lu, Yanping Song, K. Kwak, Q. Jiao, R. Rosenfeld, Qing Chen, T. Boone, W. Simonet, D. Lacey, A. Goldberg, Hq Han (2010)
Reversal of Cancer Cachexia and Muscle Wasting by ActRIIB Antagonism Leads to Prolonged SurvivalCell, 142
L. Tintignac, Julie Lagirand, Sabrina Batonnet, V. Sirri, M. Leibovitch, S. Leibovitch (2005)
Degradation of MyoD Mediated by the SCF (MAFbx) Ubiquitin Ligase*Journal of Biological Chemistry, 280
S. Lokireddy, I. Wijesoma, Serena Teng, S. Bonala, P. Gluckman, C. McFarlane, Mridula Sharma, R. Kambadur (2012)
The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli.Cell metabolism, 16 5
T. Wenz, S. Rossi, R. Rotundo, B. Spiegelman, C. Moraes (2009)
Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during agingProceedings of the National Academy of Sciences, 106
M. Sandri, Jiandie Lin, C. Handschin, Wenli Yang, Z. Arany, S. Lecker, A. Goldberg, B. Spiegelman (2006)
PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcriptionProceedings of the National Academy of Sciences, 103
D. Allen, T. Unterman (2007)
Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factorsAmerican Journal of Physiology-cell Physiology, 292
E. Masiero, L. Agatea, C. Mammucari, B. Blaauw, E. Loro, M. Komatsu, D. Metzger, C. Reggiani, S. Schiaffino, M. Sandri (2009)
Autophagy is required to maintain muscle mass.Cell metabolism, 10 6
E. Barton-Davis, D. Shoturma, H. Sweeney (1999)
Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle.Acta physiologica Scandinavica, 167 4
J. Hirosumi, Gurol Tuncman, Lufen Chang, Cem Görgün, K. Uysal, K. Maeda, M. Karin, G. Hotamisligil (2002)
A central role for JNK in obesity and insulin resistanceNature, 420
Pham Quy, Akiko Kuma, P. Pierre, N. Mizushima (2012)
Proteasome-dependent Activation of Mammalian Target of Rapamycin Complex 1 (mTORC1) Is Essential for Autophagy Suppression and Muscle Remodeling Following Denervation*The Journal of Biological Chemistry, 288
C. Charvet, C. Houbron, A. Parlakian, Julien Giordani, C. Lahoute, A. Bertrand, A. Sotiropoulos, L. Renou, A. Schmitt, J. Melki, Zhenlin Li, D. Daegelen, D. Tuil (2006)
New Role for Serum Response Factor in Postnatal Skeletal Muscle Growth and Regeneration via the Interleukin 4 and Insulin-Like Growth Factor 1 PathwaysMolecular and Cellular Biology, 26
V. Kirkin, T. Lamark, Yu-Shin Sou, G. Bjørkøy, Jennifer Nunn, J. Bruun, E. Shvets, David McEwan, T. Clausen, P. Wild, Ivana Bilusic, Jean-Philippe Theurillat, Aud Øvervatn, T. Ishii, Z. Elazar, M. Komatsu, I. Dikič, T. Johansen (2009)
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates.Molecular cell, 33 4
V. Kedar, Holly McDonough, R. Arya, Hui-Hua Li, H. Rockman, C. Patterson (2004)
Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin IProceedings of the National Academy of Sciences of the United States of America, 101
M. Snow (1990)
Satellite cell response in rat soleus muscle undergoing hypertrophy due to surgical ablation of synergistsThe Anatomical Record, 227
Solenn Patalano, G. Prulière, François Prodon, Alexandre Paix, Philippe Dru, Christian Sardet, J. Chenevert (2006)
The aPKC–PAR-6–PAR-3 cell polarity complex localizes to the centrosome attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryoJournal of Cell Science, 119
Huang (2007)
Dynamic FoxO transcription factorsJ Cell Sci, 120
E. Kudryashova, I. Kramerova, M. Spencer (2012)
Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H.The Journal of clinical investigation, 122 5
F. Mourkioti, P. Kratsios, T. Luedde, Yao‐Hua Song, P. Delafontaine, R. Adami, V. Parente, R. Bottinelli, M. Pasparakis, N. Rosenthal (2006)
Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration.The Journal of clinical investigation, 116 11
Zhidan Wu, P. Puigserver, U. Andersson, Chenyu Zhang, G. Adelmant, V. Mootha, A. Troy, S. Cinti, B. Lowell, R. Scarpulla, B. Spiegelman (1999)
Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1Cell, 98
C. McFarlane, Erin Plummer, Mark Thomas, Alex Hennebry, Murray Ashby, Nicholas Ling, Heather Smith, Mridula Sharma, R. Kambadur (2006)
Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF‐κB‐independent, FoxO1‐dependent mechanismJournal of Cellular Physiology, 209
M. Murgia, A. Serrano, E. Calabria, G. Pallafacchina, T. Lømo, S. Schiaffino (2000)
Ras is involved in nerve-activity-dependent regulation of muscle genesNature Cell Biology, 2
E. Greer, Philip Oskoui, M. Banko, Jay Maniar, M. Gygi, S. Gygi, A. Brunet (2007)
The Energy Sensor AMP-activated Protein Kinase Directly Regulates the Mammalian FOXO3 Transcription Factor*Journal of Biological Chemistry, 282
S. Schiaffino, L. Gorza, S. Sartore, L. Saggin, M. Carli (1986)
Embryonic myosin heavy chain as a differentiation marker of developing human skeletal muscle and rhabdomyosarcoma. A monoclonal antibody study.Experimental cell research, 163 1
B. Blaauw, M. Canato, L. Agatea, L. Toniolo, C. Mammucari, E. Masiero, Reimar Abraham, M. Sandri, S. Schiaffino, C. Reggiani (2009)
Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activationThe FASEB Journal, 23
Li (2004)
Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complexJ Clin Invest, 114
Se-Jin Lee (2004)
Regulation of muscle mass by myostatin.Annual review of cell and developmental biology, 20
Rita Hanna, Melissa Quinsay, Amabel Orogo, Kayla Giang, S. Rikka, Å. Gustafsson (2012)
Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy*The Journal of Biological Chemistry, 287
Ka-man Lai, Michael Gonzalez, W. Poueymirou, W. Kline, Erqian Na, Elizabeth Zlotchenko, T. Stitt, A. Economides, G. Yancopoulos, D. Glass (2004)
Conditional Activation of Akt in Adult Skeletal Muscle Induces Rapid HypertrophyMolecular and Cellular Biology, 24
S. Reisz‐Porszasz, S. Bhasin, J. Artaza, R. Shen, I. Sinha‐Hikim, A. Hogue, T. Fielder, N. Gonzalez-Cadavid (2003)
Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin.American journal of physiology. Endocrinology and metabolism, 285 4
R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Foretz, B. Viollet (2011)
Antagonistic control of muscle cell size by AMPK and mTORC1Cell Cycle, 10
A. Musarò, K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E. Barton, H. Sweeney, N. Rosenthal (2001)
Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscleNature Genetics, 27
O. Schakman, H. Gilson, J. Thissen (2008)
Mechanisms of glucocorticoid-induced myopathy.The Journal of endocrinology, 197 1
P. Grumati, L. Coletto, P. Sabatelli, M. Cescon, A. Angelin, E. Bertaggia, B. Blaauw, A. Urciuolo, T. Tiepolo, L. Merlini, N. Maraldi, P. Bernardi, M. Sandri, P. Bonaldo (2010)
Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degenerationNature Medicine, 16
N. Ito, U. Ruegg, A. Kudo, Y. Miyagoe‐Suzuki, S. Takeda (2012)
Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophyNature Medicine, 19
E. Bertaggia, L. Coletto, M. Sandri (2012)
Posttranslational modifications control FoxO3 activity during denervation.American journal of physiology. Cell physiology, 302 3
C. Polge, A. Heng, M. Jarzaguet, Sophie Ventadour, A. Claustre, L. Combaret, D. Béchet, M. Matondo, S. Uttenweiler-Joseph, B. Monsarrat, D. Attaix, D. Taillandier (2011)
Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1The FASEB Journal, 25
Marielle Saclier, S. Cuvellier, M. Magnan, R. Mounier, B. Chazaud (2013)
Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regenerationThe FEBS Journal, 280
C. Settembre, R. Zoncu, D. Medina, Francesco Vetrini, Serkan Erdin, S. Erdin, Tuong Huynh, Mathieu Ferron, G. Karsenty, M. Vellard, V. Facchinetti, D. Sabatini, A. Ballabio (2012)
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEBThe EMBO Journal, 31
J. Jackson, J. Mula, Tyler Kirby, C. Fry, Jonah Lee, Margo Ubele, K. Campbell, J. McCarthy, C. Peterson, E. Dupont-Versteegden (2012)
Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy.American journal of physiology. Cell physiology, 303 8
Chang-Mei Liu, Z. Yang, Canhui Liu, R. Wang, P. Tien, R. Dale, Sun Lq (2007)
Effect of RNA oligonucleotide targeting Foxo-1 on muscle growth in normal and cancer cachexia miceCancer Gene Therapy, 14
Marcelo Gomes, S. Lecker, R. Jagoe, A. Navon, A. Goldberg (2001)
Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophyProceedings of the National Academy of Sciences of the United States of America, 98
James White, Song Gao, Melissa Puppa, Shuichi Sato, J. Carson (2013)
Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscleMolecular and Cellular Endocrinology, 365
Anthony Sanchez, A. Csibi, Audrey Raibon, K. Cornille, Stéphanie Gay, H. Bernardi, R. Candau (2012)
AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1Journal of Cellular Biochemistry, 113
W. Taylor, S. Bhasin, J. Artaza, F. Byhower, Mohd Azam, Darril Willard, F. Kull, N. Gonzalez-Cadavid (2001)
Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells.American journal of physiology. Endocrinology and metabolism, 280 2
J. Sacheck, J. Hyatt, A. Raffaello, R. Jagoe, R. Roy, V. Edgerton, S. Lecker, A. Goldberg (2007)
Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseasesThe FASEB Journal, 21
J. Li, A. Goldberg (1976)
Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles.The American journal of physiology, 231 2
S. Reed, Pooja Sandesara, Sarah Senf, A. Judge (2012)
Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophyThe FASEB Journal, 26
Sarah Senf, Pooja Sandesara, Andrew Judge (2011)
p300 acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscleThe FASEB Journal, 25
I. Novak, V. Kirkin, David McEwan, Ji Zhang, P. Wild, Alexis Rozenknop, V. Rogov, F. Löhr, Doris Popovic, A. Occhipinti, A. Reichert, J. Terzic, V. Dötsch, P. Ney, I. Dikič (2010)
Nix is a selective autophagy receptor for mitochondrial clearanceEMBO reports, 11
N. Chang, M. Nguyen, J. Bourdon, Paul‐André Risse, James Martin, G. Danialou, R. Rizzuto, B. Petrof, G. Shore (2012)
Bcl-2-associated autophagy regulator Naf-1 required for maintenance of skeletal muscle.Human molecular genetics, 21 10
S. Abmayr, G. Pavlath (2012)
Myoblast fusion: lessons from flies and miceDevelopment, 139
T. Stitt, D. Drujan, B. Clarke, Frank Panaro, Yekatarina Timofeyva, W. Kline, Michael Gonzalez, G. Yancopoulos, D. Glass (2004)
The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors.Molecular cell, 14 3
P. Puigserver, James Rhee, Jerry Donovan, C. Walkey, J. Yoon, F. Oriente, Y. Kitamura, J. Altomonte, Hengjiang Dong, D. Accili, B. Spiegelman (2003)
Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interactionNature, 423
V. Risson, L. Mazelin, M. Roceri, H. Sanchez, V. Moncollin, C. Corneloup, Hélène Richard-Bulteau, A. Vignaud, D. Baas, A. Defour, D. Freyssenet, J. Tanti, Yannick Le-Marchand-Brustel, B. Ferrier, A. Conjard-Duplany, Klaas Romanino, S. Bauché, D. Hantaı̈, Matthias Mueller, S. Kozma, G. Thomas, M. Rüegg, A. Ferry, M. Pende, X. Bigard, N. Koulmann, L. Schaeffer, Yann-Gaël Gangloff (2009)
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathyThe Journal of Cell Biology, 187
C. Winbanks, K. Weeks, R. Thomson, Patricio Sepulveda, C. Beyer, H. Qian, Justin Chen, J. Allen, G. Lancaster, M. Febbraio, C. Harrison, J. McMullen, J. Chamberlain, P. Gregorevic (2012)
Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatinThe Journal of Cell Biology, 197
N. Suzuki, N. Motohashi, A. Uezumi, S. Fukada, T. Yoshimura, Y. Itoyama, M. Aoki, Y. Miyagoe‐Suzuki, S. Takeda (2007)
NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS.The Journal of clinical investigation, 117 9
S. Bodine, E. Latres, S. Baumhueter, V. Lai, L. Nuñez, B. Clarke, W. Poueymirou, Frank Panaro, Erqian Na, Kumar Dharmarajan, Z. Pan, D. Valenzuela, T. Dechiara, T. Stitt, G. Yancopoulos, D. Glass (2001)
Identification of Ubiquitin Ligases Required for Skeletal Muscle AtrophyScience, 294
A. Bonetto, T. Aydoğdu, Xiaoling Jin, Zongxiu Zhang, R. Zhan, L. Puzis, L. Koniaris, T. Zimmers (2012)
JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia.American journal of physiology. Endocrinology and metabolism, 303 3
(2010)
DHPR a1S subunit controls
A. Hishiya, S. Iemura, T. Natsume, S. Takayama, K. Ikeda, Ken Watanabe (2006)
A novel ubiquitin‐binding protein ZNF216 functioning in muscle atrophyThe EMBO Journal, 25
A. Serrano, B. Baeza-Raja, Eusebio Perdiguero, M. Jardí, P. Muñoz-Cánoves (2008)
Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy.Cell metabolism, 7 1
P. Bonaldo, M. Sandri (2013)
Cellular and molecular mechanisms of muscle atrophyDisease Models & Mechanisms, 6
V. Romanello, M. Sandri (2010)
Mitochondrial Biogenesis and Fragmentation as Regulators of Muscle Protein DegradationCurrent Hypertension Reports, 12
A. Trendelenburg, Angelika Meyer, D. Rohner, Joseph Boyle, S. Hatakeyama, D. Glass (2009)
Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.American journal of physiology. Cell physiology, 296 6
B. Clarke, D. Drujan, M. Willis, Leon Murphy, R. Corpina, E. Burova, S. Rakhilin, T. Stitt, C. Patterson, E. Latres, D. Glass (2007)
The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle.Cell metabolism, 6 5
N. Raben, Victoria Hill, L. Shea, S. Takikita, R. Baum, N. Mizushima, E. Ralston, P. Plotz (2008)
Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease.Human molecular genetics, 17 24
A. Conery, Yanna Cao, E. Thompson, C. Townsend, T. Ko, K. Luo (2004)
Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β-induced apoptosisNature Cell Biology, 6
M. Mavalli, D. Digirolamo, Yong-Jun Fan, Ryan Riddle, K. Campbell, T. Groen, S. Frank, M. Sperling, K. Esser, M. Bamman, T. Clemens (2010)
Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice.The Journal of clinical investigation, 120 11
Leslie Baehr, J. Furlow, S. Bodine (2011)
Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoidsThe Journal of Physiology, 589
E. Latres, A. Amini, Ashley Amini, Jennifer Griffiths, Francis Martin, Yi Wei, H. Lin, G. Yancopoulos, D. Glass (2005)
Insulin-like Growth Factor-1 (IGF-1) Inversely Regulates Atrophy-induced Genes via the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) Pathway*Journal of Biological Chemistry, 280
(2003)
ª 2013 The Authors Journal compilation ª 2013 FEBS overexpression of myostatin
Ashok Kumar, Shephali Bhatnagar, P. Paul (2012)
TWEAK and TRAF6 regulate skeletal muscle atrophyCurrent Opinion in Clinical Nutrition and Metabolic Care, 15
G. Minetti, J. Feige, A. Rosenstiel, F. Bombard, V. Meier, Annick Werner, F. Bassilana, A. Sailer, Peter Kahle, C. Lambert, D. Glass, M. Fornaro (2011)
Gαi2 Signaling Promotes Skeletal Muscle Hypertrophy, Myoblast Differentiation, and Muscle RegenerationScience Signaling, 4
H. Amthor, A. Otto, A. Vulin, A. Rochat, J. Dumonceaux, Luis Garcia, E. Mouisel, C. Hourde, R. Macharia, M. Friedrichs, F. Relaix, P. Zammit, A. Matsakas, K. Patel, T. Partridge (2009)
Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activityProceedings of the National Academy of Sciences, 106
G. Adams, V. Caiozzo, F. Haddad, K. Baldwin (2002)
Cellular and molecular responses to increased skeletal muscle loading after irradiation.American journal of physiology. Cell physiology, 283 4
A. Goldberg (1969)
Protein turnover in skeletal muscle. I. Protein catabolism during work-induced hypertrophy and growth induced with growth hormone.The Journal of biological chemistry, 244 12
E. Greer, Dara Dowlatshahi, M. Banko, J. Villén, Kimmi Hoang, Daniel Blanchard, S. Gygi, A. Brunet (2007)
An AMPK-FOXO Pathway Mediates Longevity Induced by a Novel Method of Dietary Restriction in C. elegansCurrent Biology, 17
J. Bruusgaard, I. Egner, Tove Larsen, S. Dupré-Aucouturier, Dominique Desplanches, Kristian Gundersen (2012)
No change in myonuclear number during muscle unloading and reloading.Journal of applied physiology, 113 2
Taichi Hara, Kenji Nakamura, M. Matsui, A. Yamamoto, Yohko Nakahara, Rika Suzuki-Migishima, M. Yokoyama, K. Mishima, I. Saito, H. Okano, N. Mizushima (2006)
Suppression of basal autophagy in neural cells causes neurodegenerative disease in miceNature, 441
A. Goldberg, H. Goodman (1969)
Relationship between cortisone and muscle work in determining muscle sizeThe Journal of Physiology, 200
C. Settembre, Chiara Malta, V. Polito, Moises Arencibia, Francesco Vetrini, Serkan Erdin, S. Erdin, Tuong Huynh, D. Medina, P. Colella, Marco Sardiello, D. Rubinsztein, A. Ballabio (2011)
TFEB Links Autophagy to Lysosomal BiogenesisScience, 332
G. Pallafacchina, E. Calabria, A. Serrano, John Kalhovde, S. Schiaffino (2002)
A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specificationProceedings of the National Academy of Sciences of the United States of America, 99
A. Verheul, C. Mantilla, W. Zhan, Miguel Bernal, P. Dekhuijzen, G. Sieck (2004)
Influence of corticosteroids on myonuclear domain size in the rat diaphragm muscle.Journal of applied physiology, 97 5
J. McCarthy, J. Mula, Mitsunori Miyazaki, Rod Erfani, Kelcye Garrison, A. Farooqui, Ratchakrit Srikuea, Benjamin Lawson, B. Grimes, C. Keller, G. Zant, K. Campbell, K. Esser, E. Dupont-Versteegden, C. Peterson (2011)
Effective fiber hypertrophy in satellite cell-depleted skeletal muscleDevelopment, 138
Skeletal muscle mass increases during postnatal development through a process of hypertrophy, i.e. enlargement of individual muscle fibers, and a similar process may be induced in adult skeletal muscle in response to contractile activity, such as strength exercise, and specific hormones, such as androgens and β‐adrenergic agonists. Muscle hypertrophy occurs when the overall rates of protein synthesis exceed the rates of protein degradation. Two major signaling pathways control protein synthesis, the IGF1–Akt–mTOR pathway, acting as a positive regulator, and the myostatin–Smad2/3 pathway, acting as a negative regulator, and additional pathways have recently been identified. Proliferation and fusion of satellite cells, leading to an increase in the number of myonuclei, may also contribute to muscle growth during early but not late stages of postnatal development and in some forms of muscle hypertrophy in the adult. Muscle atrophy occurs when protein degradation rates exceed protein synthesis, and may be induced in adult skeletal muscle in a variety of conditions, including starvation, denervation, cancer cachexia, heart failure and aging. Two major protein degradation pathways, the proteasomal and the autophagic–lysosomal pathways, are activated during muscle atrophy and variably contribute to the loss of muscle mass. These pathways involve a variety of atrophy‐related genes or atrogenes, which are controlled by specific transcription factors, such as FoxO3, which is negatively regulated by Akt, and NF‐κB, which is activated by inflammatory cytokines.
Febs Journal – Wiley
Published: Sep 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.