Access the full text.
Sign up today, get DeepDyve free for 14 days.
Ivan Moreno-Hernandez, Clara MacFarland, Carlos Read, Kimberly Papadantonakis, B. Brunschwig, N. Lewis (2017)
Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H2SO4Energy and Environmental Science, 10
J. Pijpers, M. Winkler, Y. Surendranath, T. Buonassisi, D. Nocera (2011)
Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalystProceedings of the National Academy of Sciences, 108
R. Fuentes, Jake Farell, J. Weidner (2011)
Multimetallic Electrocatalysts of Pt, Ru, and Ir Supported on Anatase and Rutile TiO2 for Oxygen Evolution in an Acid EnvironmentElectrochemical and Solid State Letters, 14
Ye Wang, Abel Santos, A. Evdokiou, D. Losic (2015)
Rational Design of Ultra-Short Anodic Alumina Nanotubes by Short-Time Pulse AnodizationElectrochimica Acta, 154
S. Anantharaj, Pula Reddy, S. Kundu (2017)
Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst.Inorganic chemistry, 56 3
J. Swierk, Shannon Klaus, Lena Trotochaud, A. Bell, T. Tilley (2015)
Electrochemical Study of the Energetics of the Oxygen Evolution Reaction at Nickel Iron (Oxy)Hydroxide CatalystsJournal of Physical Chemistry C, 119
M. Rosen, D. Scott (1998)
Comparative efficiency assessments for a range of hydrogen production processesInternational Journal of Hydrogen Energy, 23
Juzhe Liu, J. Nai, Tingting You, P. An, Jing Zhang, Guanshui Ma, Xiaogang Niu, Chao-Chung Liang, Shihe Yang, Lin Guo (2018)
The Flexibility of an Amorphous Cobalt Hydroxide Nanomaterial Promotes the Electrocatalysis of Oxygen Evolution Reaction.Small, 14 17
Bryan Suryanto, Xunyu Lu, Chuan Zhao (2013)
Layer-by-layer assembly of transparent amorphous Co3O4 nanoparticles/graphene composite electrodes for sustained oxygen evolution reactionJournal of Materials Chemistry, 1
Liangyu Ma, L. Ting, V. Molinari, C. Giordano, B. Yeo (2015)
Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass routeJournal of Materials Chemistry, 3
Qingqing Xiao, Yuxia Zhang, Xin Guo, L. Jing, Zhiyu Yang, Yifei Xue, Yi‐Ming Yan, Kening Sun (2014)
A high-performance electrocatalyst for oxygen evolution reactions based on electrochemical post-treatment of ultrathin carbon layer coated cobalt nanoparticles.Chemical communications, 50 86
Chengyu He, Xinglong Wu, Z. He (2014)
Amorphous Nickel-Based Thin Film As a Janus Electrocatalyst for Water SplittingJournal of Physical Chemistry C, 118
B. Tilak, C. Chen (1993)
Generalized analytical expressions for Tafel slope, reaction order and a.c. impedance for the hydrogen evolution reaction (HER): mechanism of HER on platinum in alkaline mediaJournal of Applied Electrochemistry, 23
Lijuan Han, Pengyi Tang, Álvaro Reyes-Carmona, Bárbara Rodríguez-García, Mabel Torréns, J. Morante, J. Arbiol, J. Galán‐Mascarós (2016)
Enhanced Activity and Acid pH Stability of Prussian Blue-type Oxygen Evolution Electrocatalysts Processed by Chemical Etching.Journal of the American Chemical Society, 138 49
L. Ting, Yilin Deng, Liangyu Ma, Yinjia Zhang, A. Peterson, B. Yeo (2016)
Catalytic Activities of Sulfur Atoms in Amorphous Molybdenum Sulfide for the Electrochemical Hydrogen Evolution ReactionACS Catalysis, 6
K. Karthick, S. Anantharaj, P. Karthik, B. Subramanian, S. Kundu (2017)
Self-Assembled Molecular Hybrids of CoS-DNA for Enhanced Water Oxidation with Low Cobalt Content.Inorganic chemistry, 56 11
Bingfei Cao, G. Veith, J. Neuefeind, R. Adzic, P. Khalifah (2013)
Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction.Journal of the American Chemical Society, 135 51
Bo Li, Shuangming Chen, Jie Tian, Ming Gong, Hangxun Xu, L. Song (2017)
Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reactionNano Research, 10
X. Ge, Luyang Chen, Ling Zhang, Yuren Wen, A. Hirata, Mingwei Chen (2014)
Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for High‐Efficiency Hydrogen ProductionAdvanced Materials, 26
Yuanshe Sun, Chunde Wang, T. Ding, J. Zuo, Qing Yang (2016)
Fabrication of amorphous CoMoS4 as a bifunctional electrocatalyst for water splitting under strong alkaline conditions.Nanoscale, 8 45
A. Grimaud, Oscar Diaz-Morales, B. Han, W. Hong, Yueh-Lin Lee, L. Giordano, K. Stoerzinger, M. Koper, Y. Shao-horn (2017)
Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution.Nature chemistry, 9 5
Chenglin Xue, Guangshe Li, Jianghao Wang, Yan Wang, Liping Li (2018)
Fe3+ doped amorphous Co2BOy(OH)z with enhanced activity for oxygen evolution reactionElectrochimica Acta, 280
M. Morimitsu, N. Oshiumi (2009)
Accelerated Oxygen Evolution and Suppressed MnOOH Deposition on Amorphous IrO2–Ta2O5 CoatingsChemistry Letters, 38
Mikaela Görlin, Jorge Araújo, Henrike Schmies, Denis Bernsmeier, Sören Dresp, Manuel Gliech, Z. Jusys, P. Chernev, R. Kraehnert, H. Dau, P. Strasser (2017)
Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.Journal of the American Chemical Society, 139 5
Jesse Benck, Zhebo Chen, L. Kuritzky, Arnold Forman, T. Jaramillo (2012)
Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic ActivityACS Catalysis, 2
Lei Yang, Zenglong Guo, Jing Huang, Yaoning Xi, Rongjie Gao, G. Su, Wei Wang, Li-xin Cao, Bohua Dong (2017)
Vertical Growth of 2D Amorphous FePO4 Nanosheet on Ni Foam: Outer and Inner Structural Design for Superior Water SplittingAdvanced Materials, 29
Min Zeng, Hao Wang, Chongsun Zhao, Jiake Wei, Kuo Qi, Wenlong Wang, X. Bai (2016)
Nanostructured Amorphous Nickel Boride for High‐Efficiency Electrocatalytic Hydrogen Evolution over a Broad pH RangeChemCatChem, 8
Hanfeng Liang, A. Gandi, Chuan Xia, M. Hedhili, D. Anjum, U. Schwingenschlögl, H. Alshareef (2017)
Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation ApplicationsACS energy letters, 2
Sang Lee, Jesse Benck, Charlie Tsai, Joonsuk Park, A. Koh, F. Abild-Pedersen, T. Jaramillo, R. Sinclair (2016)
Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production.ACS nano, 10 1
Fengzhan Sun, Changqing Li, Bo Li, Yuqing Lin (2017)
Amorphous MoSx developed on Co(OH)2 nanosheets generating efficient oxygen evolution catalystsJournal of Materials Chemistry, 5
M. Risch, F. Ringleb, M. Kohlhoff, P. Bogdanoff, P. Chernev, I. Zaharieva, H. Dau (2015)
Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysisEnergy and Environmental Science, 8
Cuijuan Zhang, C. Berlinguette, S. Trudel (2016)
Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction.Chemical communications, 52 7
Jian Jiang, Fanfei Sun, Si Zhou, Wei Hu, Hao Zhang, Jinchao Dong, Zheng Jiang, Jijun Zhao, Jianfeng Li, Wensheng Yan, Mei Wang (2018)
Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxideNature Communications, 9
M. Azuma, Y. Nakato, H. Tsubomura (1988)
Oxygen and chlorine evolution on niobium-, zirconium- and other metal-nitride amorphous thin film electrodes prepared by the reactive RF sputtering techniqueJournal of Electroanalytical Chemistry, 255
Maowen Xie, Lin Yang, Yuyao Ji, Ziqiang Wang, Xiang Ren, Zhiang Liu, Abdullah Asiri, Xiaoli Xiong, Xuping Sun (2017)
An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes.Nanoscale, 9 43
Lun Yang, Xinglong Wu, Xinglong Wu, Xiaoshu Zhu, Chengyu He, M. Meng, Zhixing Gan, P. Chu (2015)
Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reactionApplied Surface Science, 341
M. Barroso, Alexander Cowan, Stephanie Pendlebury, M. Grätzel, D. Klug, J. Durrant (2011)
The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation.Journal of the American Chemical Society, 133 38
J. Rossmeisl, Zheng‐Wang Qu, H. Zhu, G. Kroes, J. Nørskov (2007)
Electrolysis of water on oxide surfacesJournal of Electroanalytical Chemistry, 607
Heron Vrubel, Xile Hu (2013)
Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving CatalystACS Catalysis, 3
Haotian Wang, Desheng Kong, P. Johanes, J. Cha, G. Zheng, Kai Yan, Nian Liu, Yi Cui (2013)
MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces.Nano letters, 13 7
P. Karthik, K. Raja, S. Kumar, K. Phani, Yuping Liu, Si‐Xuan Guo, Jie Zhang, A. Bond (2015)
Electroless deposition of iridium oxide nanoparticles promoted by condensation of [Ir(OH)6]2− on an anodized Au surface: application to electrocatalysis of the oxygen evolution reactionRSC Advances, 5
H. Casalongue, Jesse Benck, Charlie Tsai, Rasmus Karlsson, S. Kaya, M. Ng, L. Pettersson, F. Abild-Pedersen, J. Nørskov, H. Ogasawara, T. Jaramillo, A. Nilsson (2014)
Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution ReactionJournal of Physical Chemistry C, 118
Y. Matsumoto, E. Sato (1986)
Electrocatalytic properties of transition metal oxides for oxygen evolution reactionMaterials Chemistry and Physics, 14
Jiang Deng, M. Nellist, M. Stevens, Christian Dette, Yong Wang, S. Boettcher (2017)
Morphology Dynamics of Single-Layered Ni(OH)2/NiOOH Nanosheets and Subsequent Fe Incorporation Studied by in Situ Electrochemical Atomic Force Microscopy.Nano letters, 17 11
Juan Callejas, Joshua McEnaney, Carlos Read, J. Crompton, A. Biacchi, E. Popczun, Thomas Gordon, N. Lewis, R. Schaak (2014)
Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.ACS nano, 8 11
M. Kleinke, M. Knobel, L. Bonugli, O. Teschke (1997)
Amorphous alloys as anodic and cathodic materials for alkaline water electrolysis, 22
E. Fabbri, A. Habereder, Kay Waltar, R. Kötz, T. Schmidt (2014)
Developments and perspectives of oxide-based catalysts for the oxygen evolution reactionCatalysis Science & Technology, 4
S. Anantharaj, M. Venkatesh, A. Salunke, Tangella Simha, V. Prabu, S. Kundu (2017)
High-Performance Oxygen Evolution Anode from Stainless Steel via Controlled Surface Oxidation and Cr RemovalACS Sustainable Chemistry & Engineering, 5
M. Carmo, D. Fritz, J. Mergel, D. Stolten (2013)
A comprehensive review on PEM water electrolysisInternational Journal of Hydrogen Energy, 38
Hongmei Wang, Chunhe Li, P. Fang, Zulei Zhang, J. Zhang (2018)
Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures.Chemical Society reviews, 47 16
S. Anantharaj, K. Karthick, S. Kundu (2017)
Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanismMaterials Today Energy, 6
K. Zeng, Dongke Zhang (2010)
Recent progress in alkaline water electrolysis for hydrogen production and applicationsProgress in Energy and Combustion Science, 36
Gao Chen, Wei Zhou, Daqin Guan, J. Sunarso, Yanping Zhu, Xuefeng Hu, Wei Zhang, Zongping Shao (2017)
Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3−δ nanofilms with tunable oxidation stateScience Advances, 3
A. Marshall, S. Sunde, M. Tsypkin, R. Tunold (2007)
Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrodeInternational Journal of Hydrogen Energy, 32
Rodney Smith, Mathieu Prévot, R. Fagan, S. Trudel, C. Berlinguette (2013)
Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel.Journal of the American Chemical Society, 135 31
T. Kessler, J. Vilche, M. Ebert, K. Jüttner, W. Lorenz (1991)
Electrochemical impedance spectroscopy of oxygen and hydrogen evolution on amorphous alloys in 1 M KOHChemical Engineering & Technology, 14
A. Balram, Hanfei Zhang, S. Santhanagopalan (2017)
Enhanced Oxygen Evolution Reaction Electrocatalysis via Electrodeposited Amorphous α-Phase Nickel-Cobalt Hydroxide Nanodendrite Forests.ACS applied materials & interfaces, 9 34
Xiaoyan Zhang, Libo Li, Yaxiao Guo, Dong Liu, Tianyan You (2016)
Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction.Journal of colloid and interface science, 472
Y. Kojima, Kenichiro Suzuki, K. Fukumoto, M. Sasaki, Toshio Yamamoto, Yasuaki Kawai, Hiroaki Hayashi (2002)
Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxideInternational Journal of Hydrogen Energy, 27
Yi Cheng, S. Jiang (2015)
Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubesProgress in Natural Science: Materials International, 25
Qi Ding, B. Song, Ping Xu, Song Jin (2016)
Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related CompoundsChem, 1
M. Gao, J. Zeng, Zhang Qibo, Cheng-bo Yang, X. Li, Y. Hua, Cunying Xu (2018)
Scalable one-step electrochemical deposition of nanoporous amorphous S-doped NiFe2O4/Ni3Fe composite films as highly efficient electrocatalysts for oxygen evolution with ultrahigh stabilityJournal of Materials Chemistry, 6
Jiaqi Fan, Zuofeng Chen, Huijie Shi, Guohua Zhao (2016)
In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation.Chemical communications, 52 23
Lisa Enman, Michaela Burke, Adam Batchellor, S. Boettcher (2016)
Effects of Intentionally Incorporated Metal Cations on the Oxygen Evolution Electrocatalytic Activity of Nickel (Oxy)hydroxide in Alkaline MediaACS Catalysis, 6
T. Hisatomi, J. Kubota, K. Domen (2014)
Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.Chemical Society reviews, 43 22
M. Giz, G. Tremiliosi‐Filho, E. Gonzalez, S. Srinivasan, A. Appleby (1995)
The hydrogen evolution reaction on amorphous nickel and cobalt alloysInternational Journal of Hydrogen Energy, 20
Xiaodong Yan, Lihong Tian, Min He, Xiaobo Chen (2015)
Three-Dimensional Crystalline/Amorphous Co/Co3O4 Core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction.Nano letters, 15 9
N. Kornienko, Joaquin Resasco, Nigel Becknell, Chang‐Ming Jiang, Yi-sheng Liu, Kaiqi Nie, Xuhui Sun, Jinghua Guo, S. Leone, P. Yang (2015)
Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst.Journal of the American Chemical Society, 137 23
E. Tsuji, A. Imanishi, K. Fukui, Y. Nakato (2011)
Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solutionElectrochimica Acta, 56
R. Beltrán‐Suito, P. Menezes, M. Driess (2019)
Amorphous outperforms crystalline nanomaterials: surface modifications of molecularly derived CoP electro(pre)catalysts for efficient water-splittingJournal of Materials Chemistry A
Shuqiang Wang, J. Nai, Shihe Yang, Lin Guo (2015)
Synthesis of Amorphous Ni−Zn Double Hydroxide Nanocages with Excellent Electrocatalytic Activity toward Oxygen Evolution Reaction, 1
J. Nai, H. Yin, Tingting You, Lirong Zheng, Jing Zhang, Pengxi Wang, Zhao Jin, Yu Tian, Juzhe Liu, Z. Tang, Lin Guo (2015)
Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni–Co Double Hydroxides NanocagesAdvanced Energy Materials, 5
J.M Jakšić, M.V Vojnović, N. Krstajić (2000)
Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodesElectrochimica Acta, 45
Dawei Chen, C. Dong, Yuqin Zou, D. Su, Yu-cheng Huang, L. Tao, Shuo Dou, Shaohua Shen, Shuangyin Wang (2017)
In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction.Nanoscale, 9 33
J. Mefford, Ximing Rong, A. Abakumov, A. Abakumov, William Hardin, S. Dai, A. Kolpak, K. Johnston, K. Stevenson (2016)
Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalystsNature Communications, 7
Ang-Yu Lu, Xiulin Yang, Chien-Chih Tseng, Shixiong Min, Shi-Hsin Lin, Chang‐Lung Hsu, Henan Li, H. Idriss, J. Kuo, Kuo‐Wei Huang, Lain‐Jong Li (2016)
High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution.Small, 12 40
M. Blasco-Ahicart, Joaquín Soriano-López, J. Carbó, J. Poblet, J. Galán‐Mascarós (2018)
Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media.Nature chemistry, 10 1
Mikaela Görlin, P. Chernev, Jorge Araújo, T. Reier, Sören Dresp, B. Paul, Ralph Krähnert, H. Dau, P. Strasser (2016)
Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.Journal of the American Chemical Society, 138 17
K. Lian, D. Kirk, S. Thorpe (1995)
Investigation of a “Two‐State” Tafel Phenomenon for the Oxygen Evolution Reaction on an Amorphous Ni‐Co AlloyJournal of The Electrochemical Society, 142
Yanmei Shi, Bin Zhang (2016)
Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction.Chemical Society reviews, 45 6
Weikang Hu, Yaqin Wang, Xiaohong Hu, Yuanquan Zhou, Shengli Chen (2012)
Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic mediumJournal of Materials Chemistry, 22
Xunyu Lu, Chuan Zhao (2015)
Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densitiesNature Communications, 6
X. Zou, Yipu Liu, Guodong Li, Yuanyuan Wu, Dapeng Liu, Wang Li, Haiwen Li, Dejun Wang, Yu Zhang, Xiaoxin Zou (2017)
Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large‐Current‐Density Oxygen Evolution ElectrocatalysisAdvanced Materials, 29
Ming Gong, H. Dai (2014)
A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalystsNano Research, 8
Michaela Burke, Shihui Zou, Lisa Enman, Jaclyn Kellon, Christian Gabor, Erica Pledger, S. Boettcher (2015)
Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media.The journal of physical chemistry letters, 6 18
Y. Qiu, L. Xin, Wenzheng Li (2014)
Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.Langmuir : the ACS journal of surfaces and colloids, 30 26
M. Kanan, Y. Surendranath, D. Nocera (2009)
Cobalt-phosphate oxygen-evolving compound.Chemical Society reviews, 38 1
Joshua McEnaney, J. Crompton, Juan Callejas, E. Popczun, A. Biacchi, N. Lewis, R. Schaak (2014)
Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen EvolutionChemistry of Materials, 26
Hyeonghun Kim, Youngmin Kim, Yuseong Noh, W. Kim (2016)
Ultrathin amorphous α-Co(OH)2 nanosheets grown on Ag nanowire surfaces as a highly active and durable electrocatalyst for oxygen evolution reaction.Dalton transactions, 45 35
M. Shalom, Debora Ressnig, Xiaofei Yang, G. Clavel, Tim‐Patrick Fellinger, M. Antonietti (2015)
Nickel nitride as an efficient electrocatalyst for water splittingJournal of Materials Chemistry, 15
Yang Yang, H. Fei, G. Ruan, Changsheng Xiang, J. Tour (2014)
Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers.ACS nano, 8 9
Tanyuan Wang, Chao Wang, Yue-Hua Jin, Anna Sviripa, Jiashun Liang, Jiantao Han, Yunhui Huang, Qing Li, Gang Wu (2017)
Amorphous Co–Fe–P nanospheres for efficient water oxidationJournal of Materials Chemistry, 5
A. Blasi, C. D'urso, V. Baglio, V. Antonucci, A. Aricò, R. Ornelas, F. Matteucci, G. Orozco, D. Beltrán, Y. Meas, L. Arriaga (2009)
Preparation and evaluation of RuO2–IrO2, IrO2–Pt and IrO2–Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzerJournal of Applied Electrochemistry, 39
Tingting Liu, Qian Liu, Abdullah Asiri, Yonglan Luo, Xuping Sun (2015)
An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions.Chemical communications, 51 93
K. Lian, S. Thorpe, D. Kirk (1992)
The electrocatalytic activity of amorphous and crystalline NiCo alloys on the oxygen evolution reactionElectrochimica Acta, 37
Huayu Chen, S. Ouyang, Ming Zhao, Yunxiang Li, Jinhua Ye (2017)
Synergistic Activity of Co and Fe in Amorphous Cox-Fe-B Catalyst for Efficient Oxygen Evolution Reaction.ACS applied materials & interfaces, 9 46
Ya-Hui Fang, Zhipan Liu (2010)
Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110).Journal of the American Chemical Society, 132 51
Lena Trotochaud, S. Young, James Ranney, S. Boettcher (2014)
Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.Journal of the American Chemical Society, 136 18
Michaela Burke, Lisa Enman, Adam Batchellor, Shihui Zou, S. Boettcher (2015)
Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design PrinciplesChemistry of Materials, 27
Jhih-Fong Lin, O. Pitkänen, J. Mäklin, R. Puskas, Á. Kukovecz, A. Dombovari, G. Tóth, K. Kordas (2015)
Synthesis of tungsten carbide and tungsten disulfide on vertically aligned multi-walled carbon nanotube forests and their application as non-Pt electrocatalysts for the hydrogen evolution reactionJournal of Materials Chemistry, 3
James Blakemore, N. Schley, Maxwell Kushner-Lenhoff, A. Winter, F. D’Souza, R. Crabtree, G. Brudvig (2012)
Comparison of amorphous iridium water-oxidation electrocatalysts prepared from soluble precursors.Inorganic chemistry, 51 14
J. Theerthagiri, R. Senthil, Baskar Senthilkumar, A. Polu, J. Madhavan, M. Ashokkumar (2017)
Recent advances in MoS2 nanostructured materials for energy and environmental applications – A ReviewJournal of Solid State Chemistry, 252
P. Tran, T. Tran, M. Orio, S. Torelli, Q. Truong, Keiichiro Nayuki, Yoshikazu Sasaki, S. Chiam, R. Yi, I. Honma, J. Barber, V. Artero (2016)
Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide.Nature materials, 15 6
Jinxian Feng, Liang‐Xin Ding, Shenghua Ye, Xu-Jun He, Han Xu, Y. Tong, Gao‐Ren Li (2015)
Co(OH)2@PANI Hybrid Nanosheets with 3D Networks as High‐Performance Electrocatalysts for Hydrogen Evolution ReactionAdvanced Materials, 27
S. Kundu (2017)
Enhanced Water Oxidation with Improved Stability by Aggregated RuO2-NaPO3 Core-shell Nanostructures in Acidic MediumCurrent Nanoscience, 13
A. Budniok, J. Kupka (1989)
The evolution of oxygen on amorphous NiCoP alloysElectrochimica Acta, 34
Haoyi Li, Shuangming Chen, Haifeng Lin, Xiaobin Xu, Haozhou Yang, L. Song, Xun Wang (2017)
Nickel Diselenide Ultrathin Nanowires Decorated with Amorphous Nickel Oxide Nanoparticles for Enhanced Water Splitting Electrocatalysis.Small, 13 37
A. Indra, P. Menezes, N. Sahraie, A. Bergmann, C. Das, M. Tallarida, D. Schmeißer, P. Strasser, M. Driess (2014)
Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.Journal of the American Chemical Society, 136 50
Long Kuai, Jing Geng, C. Chen, Erjie Kan, Yadong Liu, Qing Wang, B. Geng (2014)
A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting.Angewandte Chemie, 53 29
A. Ângelo, E. Gonzalez, L. Avaca (1991)
Mechanistic studies of the oxygen reactions on NiCo2O4 spinel and the hydrogen evolution reaction on amorphous NiCo sulphideInternational Journal of Hydrogen Energy, 16
Lin-lin Chen, D. Guay, A. Lasia (1996)
Kinetics of the Hydrogen Evolution Reaction on RuO2 and IrO2 Oxide Electrodes in H 2 SO 4 Solution: An AC Impedance StudyJournal of The Electrochemical Society, 143
J. Zaffran, M. Stevens, Christina Trang, Michael Nagli, Mahran Shehadeh, S. Boettcher, M. Toroker (2017)
Influence of Electrolyte Cations on Ni(Fe)OOH Catalyzed Oxygen Evolution ReactionChemistry of Materials, 29
Michaela Burke, M. Kast, Lena Trotochaud, A. Smith, S. Boettcher (2015)
Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism.Journal of the American Chemical Society, 137 10
Nancy Li, D. Bediako, Ryan Hadt, Dugan Hayes, T. Kempa, F. Cube, D. Bell, Lingyun Chen, Lin Chen, D. Nocera (2017)
Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving filmsProceedings of the National Academy of Sciences, 114
A. Smith, Lena Trotochaud, Michaela Burke, S. Boettcher (2015)
Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution.Chemical communications, 51 25
S. Anantharaj, S. Kundu (2019)
Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting?ACS Energy Letters
Nana Han, Ke Yang, Zhiyi Lu, Yingjie Li, Wenwen Xu, Tengfei Gao, Zhao Cai, Ying Zhang, V. Batista, Wen Liu, Xiaoming Sun (2018)
Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acidNature Communications, 9
Guang Liu, Dongying He, Rui Yao, Yong Zhao, Jinping Li (2018)
Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splittingNano Research, 11
Minrui Gao, Yunfei Xu, Jun Jiang, Shuhong Yu (2013)
Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices.Chemical Society reviews, 42 7
Adam Simpson, A. Lutz (2007)
Exergy analysis of hydrogen production via steam methane reformingInternational Journal of Hydrogen Energy, 32
M. Louie, A. Bell (2013)
An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.Journal of the American Chemical Society, 135 33
F. Hu, Shengli Zhu, Shuangming Chen, Yu Li, Lu Ma, Tianpin Wu, Y. Zhang, Chengming Wang, Congcong Liu, Xian-Jin Yang, L. Song, Xiaowei Yang, Y. Xiong (2017)
Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic MediaAdvanced Materials, 29
Yufei Zhao, Yuxia Zhang, Zhiyu Yang, Yi‐Ming Yan, Kening Sun (2013)
Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a reviewScience and Technology of Advanced Materials, 14
Xuqiang Ji, Xiang Ren, S. Hao, Fengyu Xie, Fengli Qu, Gu Du, Abdullah Asiri, Xuping Sun (2017)
Remarkable enhancement of the alkaline oxygen evolution reaction activity of NiCo2O4 by an amorphous borate shellInorganic chemistry frontiers, 4
Michael Huynh, D. Bediako, D. Nocera (2014)
A functionally stable manganese oxide oxygen evolution catalyst in acid.Journal of the American Chemical Society, 136 16
J. Podestá, R. Piatti, A. Arvia, P. Ekdunge, K. Jüttner, G. Kreysa (1992)
The behaviour of NiCoP base amorphous alloys for water electrolysis in strongly alkaline solutions prepared through electroless depositionInternational Journal of Hydrogen Energy, 17
Haiyan Jin, Shanjun Mao, Guo-Peng Zhan, Fan Xu, Xiaobing Bao, Yong Wang (2017)
Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reactionJournal of Materials Chemistry, 5
Jean Nsanzimana, Yuecheng Peng, Yangjian Xu, L. Thia, Cheng Wang, B.Y. Xia, Xin Wang (2018)
An Efficient and Earth‐Abundant Oxygen‐Evolving Electrocatalyst Based on Amorphous Metal BoridesAdvanced Energy Materials, 8
H. Wendt, G. Imarisio (1988)
Nine years of research and development on advanced water electrolysis. A review of the research programme of the Commission of the European CommunitiesJournal of Applied Electrochemistry, 18
Yilin Deng, L. Ting, Perlin Neo, Yinjia Zhang, A. Peterson, B. Yeo (2016)
Operando Raman Spectroscopy of Amorphous Molybdenum Sulfide (MoSx) during the Electrochemical Hydrogen Evolution Reaction: Identification of Sulfur Atoms as Catalytically Active Sites for H+ ReductionACS Catalysis, 6
C. Angelinetta, S. Trasatti, Ljiljana Atanasoska, Z. Minevski, Radoslav Atanasoski (1989)
Effect of preparation on the surface and electrocatalytic properties of RuO2 + IrO2 mixed oxide electrodesMaterials Chemistry and Physics, 22
G. Kreysa, B. Håkansson (1986)
Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solutionJournal of Electroanalytical Chemistry, 201
P. Żółtowski (1980)
Hydrogen evolution reaction on smooth tungsten carbide electrodesElectrochimica Acta, 25
Justus Masa, Philipp Weide, D. Peeters, I. Sinev, Wei Xia, Zhenyu Sun, C. Somsen, M. Muhler, W. Schuhmann (2016)
Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen EvolutionAdvanced Energy Materials, 6
Ya-Rong Zheng, Minrui Gao, Q. Gao, Huihui Li, Jie Xu, Zhen-Yu Wu, Shuhong Yu (2015)
An efficient CeO2 /CoSe2 Nanobelt composite for electrochemical water oxidation.Small, 11 2
S. Anantharaj, Sivasankara Ede, K. Sakthikumar, K. Karthick, Soumyaranjan Mishra, S. Kundu (2016)
Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A ReviewACS Catalysis, 6
Peng Xiao, Xiaoming Ge, Haibo Wang, Zhaolin Liu, A. Fisher, Xin Wang (2015)
Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen EvolutionAdvanced Functional Materials, 25
Katharina Klingan, F. Ringleb, I. Zaharieva, J. Heidkamp, P. Chernev, Diego González-Flores, M. Risch, A. Fischer, H. Dau (2014)
Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.ChemSusChem, 7 5
A. Kudo, Y. Miseki (2009)
Heterogeneous photocatalyst materials for water splitting.Chemical Society reviews, 38 1
U. Sultana, Tianwei He, A. Du, A. O’Mullane (2017)
An amorphous dual action electrocatalyst based on oxygen doped cobalt sulfide for the hydrogen and oxygen evolution reactionsRSC Advances, 7
M. Koper (2011)
Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysisJournal of Electroanalytical Chemistry, 660
Qun Li, Zhicai Xing, Abdullah Asiri, P. Jiang, Xuping Sun (2014)
Cobalt phosphide nanoparticles film growth on carbon cloth: A high-performance cathode for electrochemical hydrogen evolutionInternational Journal of Hydrogen Energy, 39
S. Anantharaj, Sivasankara Ede, K. Karthick, S. Sankar, K. Sangeetha, P. Karthik, S. Kundu (2018)
Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessmentEnergy and Environmental Science, 11
I. Katsounaros, S. Cherevko, Aleksandar Zeradjanin, K. Mayrhofer (2014)
Oxygen electrochemistry as a cornerstone for sustainable energy conversion.Angewandte Chemie, 53 1
Yifan Zeng, Lanjun Chen, Ru Chen, Yanyong Wang, C. Xie, L. Tao, Liangliang Huang, Shuangyin Wang (2018)
One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactionsJournal of Materials Chemistry, 6
A. Sayeed, T. Herd, A. O’Mullane (2016)
Direct electrochemical formation of nanostructured amorphous Co(OH) 2 on gold electrodes with enhanced activity for the oxygen evolution reactionJournal of Materials Chemistry, 4
H. Jia, Jason Stark, L. Zhou, C. Ling, Takeshi Sekito, Zachary Markin (2012)
Different catalytic behavior of amorphous and crystalline cobalt tungstate for electrochemical water oxidationRSC Advances, 2
Ahamed Irshad, N. Munichandraiah (2015)
High Catalytic Activity of Amorphous Ir-Pi for Oxygen Evolution Reaction.ACS applied materials & interfaces, 7 29
Peng Xiao, Mahasin Sk, L. Thia, Xiaoming Ge, Rern Lim, Jing‐Yuan Wang, K. Lim, Xin Wang (2014)
Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reactionEnergy and Environmental Science, 7
M. Kanan, J. Yano, Y. Surendranath, M. Dincǎ, V. Yachandra, D. Nocera (2010)
Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy.Journal of the American Chemical Society, 132 39
J. Schreifels, P. Maybury, W. Swartz (1980)
X-Ray photoelectron spectroscopy of nickel boride catalysts: Correlation of surface states with reaction products in the hydrogenation of acrylonitrileJournal of Catalysis, 65
Jinxiu Zhao, Xiang Ren, Hongmin Ma, Xu Sun, Yong Zhang, Tao Yan, Q. Wei, Dan Wu (2017)
Synthesis of Self-Supported Amorphous CoMoO4 Nanowire Array for Highly Efficient Hydrogen Evolution ReactionACS Sustainable Chemistry & Engineering, 5
D. Liguras, D. Kondarides, X. Verykios (2003)
Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalystsApplied Catalysis B-environmental, 43
Wei Liu, Hu Liu, Lianna Dang, Hongxiu Zhang, Xiaolin Wu, Binying Yang, Zhongjian Li, Xingwang Zhang, L. Lei, S. Jin (2016)
Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photo‐Electrochemical Oxygen EvolutionAdvanced Functional Materials, 27
(2013)
Characterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors.Inorganic chemistry, 52 4
M. Risch, Katharina Klingan, F. Ringleb, P. Chernev, I. Zaharieva, A. Fischer, H. Dau (2012)
Water oxidation by electrodeposited cobalt oxides--role of anions and redox-inert cations in structure and function of the amorphous catalyst.ChemSusChem, 5 3
Ye-Fei Li, A. Selloni (2014)
Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and Fe-Doped NiOxACS Catalysis, 4
Pingwei Cai, Junheng Huang, Junxiang Chen, Z. Wen (2017)
Oxygen-Containing Amorphous Cobalt Sulfide Porous Nanocubes as High-Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium.Angewandte Chemie, 56 17
L. Barelli, G. Bidini, F. Gallorini, S. Servili (2008)
Hydrogen production through sorption-enhanced steam methane reforming and membrane technology : A reviewEnergy, 33
Luo Gong, Xinni Chng, Yonghua Du, S. Xi, B. Yeo (2017)
Enhanced Catalysis of the Electrochemical Oxygen Evolution Reaction by Iron(III) Ions Adsorbed on Amorphous Cobalt OxideACS Catalysis
Lena Trotochaud, James Ranney, Kerisha Williams, S. Boettcher (2012)
Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.Journal of the American Chemical Society, 134 41
Ling Zhang, Rong Zhang, Ruixiang Ge, Xiang Ren, S. Hao, Fengyu Xie, Fengli Qu, Zhiang Liu, Gu Du, Abdullah Asiri, Baozhan Zheng, Xuping Sun (2017)
Facilitating Active Species Generation by Amorphous NiFe-Bi Layer Formation on NiFe-LDH Nanoarray for Efficient Electrocatalytic Oxygen Evolution at Alkaline pH.Chemistry, 23 48
Jingfang Zhang, Yuchen Hu, Dali Liu, Yu-Qing Yu, Bin Zhang (2016)
Enhancing Oxygen Evolution Reaction at High Current Densities on Amorphous‐Like Ni–Fe–S Ultrathin Nanosheets via Oxygen Incorporation and Electrochemical TuningAdvanced Science, 4
F. Dionigi, P. Strasser (2016)
NiFe‐Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non‐Acidic ElectrolytesAdvanced Energy Materials, 6
A. Bergmann, E. Martínez-Moreno, D. Teschner, P. Chernev, Manuel Gliech, Jorge Araújo, T. Reier, H. Dau, P. Strasser (2015)
Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolutionNature Communications, 6
Haoyi Li, Shuangming Chen, Xiaofan Jia, Biao Xu, Haifeng Lin, Haozhou Yang, L. Song, Xun Wang (2017)
Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splittingNature Communications, 8
Jared Mondschein, Juan Callejas, Carlos Read, Jamie Chen, Cameron Holder, Catherine Badding, R. Schaak (2017)
Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic ConditionsChemistry of Materials, 29
Jong Yoo, Ximing Rong, Yusu Liu, A. Kolpak (2018)
Role of Lattice Oxygen Participation in Understanding Trends in the Oxygen Evolution Reaction on PerovskitesACS Catalysis, 8
Laurent Liardet, Xile Hu (2017)
Amorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen EvolutionACS Catalysis, 8
H. Alemu, K. Jüttner (1988)
Characterization of the electrocatalytic properties of amorphous metals for oxygen and hydrogen evolution by impedance measurementsElectrochimica Acta, 33
Yanguang Li, Hailiang Wang, Liming Xie, Yongye Liang, Guosong Hong, H. Dai (2011)
MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction.Journal of the American Chemical Society, 133 19
Rodney Smith, Barbora Sporinova, R. Fagan, S. Trudel, C. Berlinguette (2014)
Facile Photochemical Preparation of Amorphous Iridium Oxide Films for Water Oxidation CatalysisChemistry of Materials, 26
Luo Yu, Haiqing Zhou, Jingying Sun, Ishwar Mishra, D. Luo, Fang Yu, Ying Yu, Shuo Chen, Z. Ren (2018)
Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolutionJournal of Materials Chemistry, 6
C. Lee, Jin‐Mun Yun, Sungho Lee, S. Jo, KwangSup Eom, Doh Lee, Han‐Ik Joh, T. Fuller (2017)
Bi-axial grown amorphous MoSx bridged with oxygen on r-GO as a superior stable and efficient nonprecious catalyst for hydrogen evolutionScientific Reports, 7
Juzhe Liu, Yongfei Ji, J. Nai, Xiaogang Niu, Yi Luo, Lin Guo, Shihe Yang (2018)
Ultrathin amorphous cobalt–vanadium hydr(oxy)oxide catalysts for the oxygen evolution reactionEnergy and Environmental Science, 11
Yinjian Ye, Ning Zhang, Xiao-Xia Liu (2017)
Amorphous NiFe(oxy)hydroxide nanosheet integrated partially exfoliated graphite foil for high efficiency oxygen evolution reactionJournal of Materials Chemistry, 5
In the near future, sustainable energy conversion and storage will largely depend on the electrochemical splitting of water into hydrogen and oxygen. Perceiving this, countless research works focussing on the fundamentals of electrocatalysis of water splitting and on performance improvements are being reported everyday around the globe. Electrocatalysts of high activity, selectivity, and stability are anticipated as they directly determine energy‐ and cost efficiency of water electrolyzers. Amorphous electrocatalysts with several advantages over crystalline counterparts are found to perform better in electrocatalytic water splitting. There are plenty of studies witnessing performance enhancements in electrocatalysis of water splitting while employing amorphous materials as catalysts. The harmony between the flexibility of amorphous electrocatalysts and electrocatalysis of water splitting (both the oxygen evolution reaction [OER] and the hydrogen evolution reaction [HER]) is one of the untold and unsummarized stories in the field of electrocatalytic water splitting. This Review is devoted to comprehensively discussing the upsurge of amorphous electrocatalysts in electrochemical water splitting. In addition to that, the basics of electrocatalysis of water splitting are also elaborately introduced and the characteristics of a good electrocatalyst for OER and HER are discussed.
Small – Wiley
Published: Jan 1, 2020
Keywords: ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.