Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Stucki, G. Scherer, S. Schlagowski, E. Fischer (1998)
PEM water electrolysers: evidence for membrane failure in 100kW demonstration plantsJournal of Applied Electrochemistry, 28
L. Burke, O. Murphy, J. O'Neill, S. Venkatesan (1977)
The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodesJournal of the Chemical Society, Faraday Transactions, 73
S. Trasatti (1984)
Electrocatalysis in the anodic evolution of oxygen and chlorineElectrochimica Acta, 29
I. Godwin, M. Lyons (2013)
Enhanced oxygen evolution at hydrous nickel oxide electrodes via electrochemical ageing in alkaline solutionElectrochemistry Communications, 32
R. Levie (1999)
The electrolysis of waterJournal of Electroanalytical Chemistry, 476
A. Damjanović, A. Dey, J. Bockris (1966)
Kinetics of oxygen evolution and dissolution on platinum electrodesElectrochimica Acta, 11
Aleksandar Zeradjanin, A. Topalov, Q. Overmeere, S. Cherevko, Xingxing Chen, E. Ventosa, W. Schuhmann, K. Mayrhofer (2014)
Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidationRSC Advances, 4
(1980)
B . S . Yeo and A . T . Bell
Jin Suntivich, Kevin May, H. Gasteiger, J. Goodenough, Y. Shao-horn (2011)
A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital PrinciplesScience, 334
C. Pauli, S. Trasatti (2002)
Composite materials for electrocatalysis of O2 evolution: IrO2+SnO2 in acid solutionJournal of Electroanalytical Chemistry, 538
E. Miller, R. Rocheleau (1997)
Electrochemical and Electrochromic Behavior of Reactively Sputtered Nickel OxideJournal of The Electrochemical Society, 144
S. Medway, C. Lucas, A. Kowal, R. Nichols, D. Johnson (2006)
In situ studies of the oxidation of nickel electrodes in alkaline solutionJournal of Electroanalytical Chemistry, 587
S. Gottesfeld, S. Srinivasan (1978)
Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reactionJournal of Electroanalytical Chemistry, 86
E. Ríos, P. Chartier, J. Gautier (1999)
Oxygen evolution electrocatalysis in alkaline medium at thin MnxCo3-xO4 (0 ≤ x ≤ 1) spinel films on glass / SnO2: F prepared by spray pyrolysisSolid State Sciences, 1
T. Hepel, F. Pollak, W. O'grady (1985)
Irreversible Voltammetric Behavior of the (100) IrO2 Single‐Crystal Electrodes in Sulfuric Acid MediumJournal of The Electrochemical Society, 132
C. Iwakura, Kazuhiro Hirao, H. Tamura (1977)
Anodic evolution of oxygen on ruthenium in acidic solutionsElectrochimica Acta, 22
M. Srivastava, Md. Uddin, Jay Singh, N. Kim, J. Lee (2014)
Preparation and characterization of self-assembled layer by layer NiCo2O4–reduced graphene oxide nanocomposite with improved electrocatalytic propertiesJournal of Alloys and Compounds, 590
S. Trasatti (1999)
Water electrolysis : who first?Journal of Electroanalytical Chemistry, 476
S. Trasatti (1980)
Electrocatalysis by oxides — Attempt at a unifying approachJournal of Electroanalytical Chemistry, 111
T. Reier, M. Oezaslan, P. Strasser (2012)
Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk MaterialsACS Catalysis, 2
K. Mette, A. Bergmann, J. Tessonnier, M. Hävecker, L. Yao, T. Ressler, R. Schlögl, P. Strasser, M. Behrens (2012)
Nanostructured Manganese Oxide Supported on Carbon Nanotubes for Electrocatalytic Water SplittingChemCatChem, 4
M. Lyons, Michael Brandon (2010)
A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in baseJournal of Electroanalytical Chemistry, 641
K. Ayers, Christopher Capuano, E. Anderson (2012)
Recent Advances in Cell Cost and Efficiency for PEM-Based Water Electrolysis, 41
D. Corrigan (1987)
The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide ElectrodesJournal of The Electrochemical Society, 134
J. Rossmeisl, Zheng‐Wang Qu, H. Zhu, G. Kroes, J. Nørskov (2007)
Electrolysis of water on oxide surfacesJournal of Electroanalytical Chemistry, 607
A. Bard, L. Faulkner (1980)
Electrochemical Methods: Fundamentals and Applications
Jingshu Jia, Xinyong Li, Guohua Chen (2010)
Stable spinel type cobalt and copper oxide electrodes for O2 and H2 evolutions in alkaline solutionElectrochimica Acta, 55
M. Miles, M. Thomason (1976)
Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric StudiesJournal of The Electrochemical Society, 123
Y. Matsumoto, E. Sato (1986)
Electrocatalytic properties of transition metal oxides for oxygen evolution reactionMaterials Chemistry and Physics, 14
J. Bockris (1956)
Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of OxygenJournal of Chemical Physics, 24
R. Hutchings, K. Müller, R. Kötz, S. Stucki (1984)
A structural investigation of stabilized oxygen evolution catalystsJournal of Materials Science, 19
M. Morita, C. Iwakura, H. Tamura (1979)
The anodic characteristics of massive manganese oxide electrodeElectrochimica Acta, 24
(2012)
Advances in Physical Chemistry
T. Reier, I. Weidinger, P. Hildebrandt, R. Kraehnert, P. Strasser (2013)
Electrocatalytic Oxygen Evolution Reaction on Iridium Oxide Model Film Catalysts: Influence of Oxide Type and Catalyst Substrate Interactions, 58
K. Zeng, Dongke Zhang (2010)
Recent progress in alkaline water electrolysis for hydrogen production and applicationsProgress in Energy and Combustion Science, 36
F. Büchi, M. Inaba, T. Schmidt (2009)
Polymer electrolyte fuel cell durability
(2014)
J . R . Varcoe and R . C . T . Slade
W. Wade, N. Hackerman (1957)
Anodic phenomena at an iron electrodeTransactions of The Faraday Society, 53
C. Jin, Xuecheng Cao, F. Lu, Zhenrong Yang, Ruizhi Yang (2013)
Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline mediaInternational Journal of Hydrogen Energy, 38
I. Man, Hai-Yan Su, F. Calle‐Vallejo, H. Hansen, J. Martínez, Nilay Inoglu, J. Kitchin, T. Jaramillo, J. Nørskov, J. Rossmeisl (2011)
Universality in Oxygen Evolution Electrocatalysis on Oxide SurfacesChemCatChem, 3
A. Vojvodić, J. Nørskov (2011)
Optimizing Perovskites for the Water-Splitting ReactionScience, 334
A. Marshall, S. Sunde, M. Tsypkin, R. Tunold (2007)
Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrodeInternational Journal of Hydrogen Energy, 32
Rodney Smith, Mathieu Prévot, R. Fagan, S. Trudel, C. Berlinguette (2013)
Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel.Journal of the American Chemical Society, 135 31
B. Conway, J. Mozota (1983)
Surface and bulk processes at oxidized iridium electrodes—II. Conductivity-switched behaviour of thick oxide filmsElectrochimica Acta, 28
E. Fabbri, Annett Rabis, R. Kötz, Thomas Schmidt (2014)
Pt nanoparticles supported on Sb-doped SnO₂ porous structures: developments and issues.Physical chemistry chemical physics : PCCP, 16 27
N. Halck, V. Petrykin, P. Krtil, J. Rossmeisl (2014)
Beyond the volcano limitations in electrocatalysis--oxygen evolution reaction.Physical chemistry chemical physics : PCCP, 16 27
S. Joiret, M. Keddam, X. Nóvoa, M. Pérez, C. Rangel, H. Takenouti (2002)
Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOHCement & Concrete Composites, 24
T. Otagawa, J. Bockris (1982)
Lanthanum Nickelate as Electrocatalyst: Oxygen EvolutionJournal of The Electrochemical Society, 129
A. Ramírez, P. Bogdanoff, D. Friedrich, S. Fiechter (2012)
Synthesis of Ca2Mn3O8 films and their electrochemical studies for the oxygen evolution reaction (OER) of waterNano Energy, 1
Aleksandar Zeradjanin, Nadine Menzel, W. Schuhmann, P. Strasser (2014)
On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti-Ru-Ir mixed metal oxide electrocatalysts.Physical chemistry chemical physics : PCCP, 16 27
P. Sabatier (1911)
Hydrogénations et déshydrogénations par catalyseEuropean Journal of Inorganic Chemistry, 44
Hong Nong, Lin Gan, E. Willinger, D. Teschner, P. Strasser (2014)
IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splittingChemical Science, 5
S. Ahn, Insoo Choi, Hee-Young Park, S. Hwang, S. Yoo, E. Cho, Hyoung‐Juhn Kim, D. Henkensmeier, S. Nam, Soo‐Kil Kim, J. Jang (2013)
Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis.Chemical communications, 49 81
M. Chialvo, A. Chialvo (1988)
Oxygen evolution reaction on thick hydrous nickel oxide electrodesElectrochimica Acta, 33
Catalysis Science & Technology Perspective Open Access Article
D. Cibrev, M. Jankulovska, T. Lana-Villarreal, R. Gómez (2013)
Oxygen evolution at ultrathin nanostructured Ni(OH)2 layers deposited on conducting glassInternational Journal of Hydrogen Energy, 38
A. Marshall, R. Haverkamp (2010)
Electrocatalytic activity of IrO2-RuO2 supported on Sb-doped SnO2 nanoparticlesElectrochimica Acta, 55
(2012)
This journal is © The Royal Society of Chemistry
H. Ibrahim, A. Ilinca, J. Perron (2008)
Energy storage systems—Characteristics and comparisonsRenewable & Sustainable Energy Reviews, 12
I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov, T. Vitanov (1997)
Electrocatalytic activity of spinel related cobalties MxCo3−xO4 (M = Li, Ni, Cu) in the oxygen evolution reactionJournal of Electroanalytical Chemistry, 429
R. Kötz, H. Lewerenz, P. Brüesch, S. Stucki (1983)
Oxygen evolution on Ru and Ir electrodesJournal of Electroanalytical Chemistry, 150
T. Wen, Hongyan Kang (1998)
Co-Ni-Cu ternary spinel oxide-coated electrodes for oxygen evolution in alkaline solutionElectrochimica Acta, 43
L. Silva, V. Alves, S. Trasatti, J. Boodts (1997)
Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7−x)PtxO2. Oxygen evolution from acidic solutionJournal of Electroanalytical Chemistry, 427
A. Delahaye-Vidal, M. Figlarz (1987)
Textural and structural studies on nickel hydroxide electrodes. II. Turbostratic nickel (II) hydroxide submitted to electrochemical redox cyclingJournal of Applied Electrochemistry, 17
J. Varcoe, R. Slade (2006)
An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cellsElectrochemistry Communications, 8
R. Kötz, S. Stucki, D. Scherson, D. Kolb (1984)
In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid mediaJournal of Electroanalytical Chemistry, 172
Junyuan Xu, Qingfeng Li, Martin Hansen, E. Christensen, Antonio García, Gaoyang Liu, Xindong Wang, N. Bjerrum (2012)
Antimony doped tin oxides and their composites with tin pyrophosphates as catalyst supports for oxygen evolution reaction in proton exchange membrane water electrolysisInternational Journal of Hydrogen Energy, 37
J. Rossmeisl, K. Dimitrievski, P. Siegbahn, J. Nørskov (2007)
Comparing Electrochemical and Biological Water SplittingJournal of Physical Chemistry C, 111
D. Rogers, R. Shannon, A. Sleight, J. Gillson (1969)
Crystal chemistry of metal dioxides with rutile-related structuresInorganic Chemistry, 8
B. Messaoudi, S. Joiret, M. Keddam, H. Takenouti (2001)
Anodic behaviour of manganese in alkaline mediumElectrochimica Acta, 46
Min-seuk Kim, Kwang-bum Kim (1998)
A Study on the Phase Transformation of Electrochemically Precipitated Nickel Hydroxides Using an Electrochemical Quartz Crystal MicrobalanceJournal of The Electrochemical Society, 145
J. Bockris, T. Otagawa (1984)
The Electrocatalysis of Oxygen Evolution on PerovskitesJournal of The Electrochemical Society, 131
G. Lodi, E. Sivieri, A. Battisti, S. Trasatti (1978)
Ruthenium dioxide-based film electrodesJournal of Applied Electrochemistry, 8
Xu Wu, K. Scott (2011)
CuxCo3−xO4 (0 ≤ x < 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysersJournal of Materials Chemistry, 21
J. Mozota, B. Conway (1983)
Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviourElectrochimica Acta, 28
Karan Kadakia, M. Datta, Prashanth Jampani, Sung-Kyoo Park, P. Kumta (2013)
Novel F-doped IrO2 oxygen evolution electrocatalyst for PEM based water electrolysisJournal of Power Sources, 222
G. Simmons, A. Vértes, M. Varsányi, H. Leidheiser (1979)
Emission Mössbauer Studies of Anodically Formed CoO2Journal of The Electrochemical Society, 126
G. Simmons, E. Kellerman, H. Leidheiser (1976)
In Situ Studies of the Passivation and Anodic Oxidation of Cobalt by Emission Mössbauer Spectroscopy I . Theoretical Background, Experimental Methods, and Experimental Results for Borate Solution (pH 8.5)Journal of The Electrochemical Society, 123
Mamoru Komo, Asuna Hagiwara, S. Taminato, M. Hirayama, R. Kanno (2012)
Oxygen Evolution and Reduction Reactions on La0.8Sr0.2CoO3 (001), (110), and (111) Surfaces in an Alkaline SolutionElectrochemistry, 80
J. Landon, Ethan Demeter, Nilay Inoglu, C. Keturakis, I. Wachs, R. Vasić, A. Frenkel, J. Kitchin (2012)
Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline ElectrolytesACS Catalysis, 2
M. Lyons, S. Floquet (2011)
Mechanism of oxygen reactions at porous oxide electrodes. Part 2--Oxygen evolution at RuO2, IrO2 and Ir(x)Ru(1-x)O2 electrodes in aqueous acid and alkaline solution.Physical chemistry chemical physics : PCCP, 13 12
M. Bajdich, M. García-Mota, A. Vojvodić, J. Nørskov, A. Bell (2013)
Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water.Journal of the American Chemical Society, 135 36
Ram Subbaraman, D. Tripković, Kee-Chul Chang, D. Strmcnik, A. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. Markovic (2012)
Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts.Nature materials, 11 6
Ravindra Singh, Naveen Singh, J. Singh (2002)
Electrocatalytic properties of new active ternary ferrite film anodes for O2 evolution in alkaline mediumElectrochimica Acta, 47
Bang-An Lu, Changqing Wang, Shuli Chen, Yin Jinling, Guiling Wang, D. Cao (2013)
A novel composite electrode for oxygen evolution reactionJournal of Solid State Electrochemistry, 17
Yuto Miyahara, K. Miyazaki, T. Fukutsuka, T. Abe (2014)
Catalytic Roles of Perovskite Oxides in Electrochemical Oxygen Reactions in Alkaline MediaJournal of The Electrochemical Society, 161
R. Kötz, S. Stucki (1986)
Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid mediaElectrochimica Acta, 31
M. Cappadonia, J. Divisek, T. Heyden, U. Stimming (1994)
Oxygen evolution at nickel anodes in concentrated alkaline solutionElectrochimica Acta, 39
H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser (2010)
The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological CatalysisChemCatChem, 2
Junyuan Xu, Junyuan Xu, D. Aili, Qingfeng Li, E. Christensen, J. Jensen, Wei Zhang, Martin Hansen, Gaoyang Liu, Xindong Wang, N. Bjerrum (2014)
Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysisEnergy and Environmental Science, 7
K. Neyerlin, Greg Bugosh, R. Forgie, Zengcai Liu, P. Strasser (2009)
Combinatorial Study of High Surface-Area Binary and Ternary Electrocatalysts for the Oxygen Evolution ReactionJournal of The Electrochemical Society, 156
(2012)
Availability of Metals and Materials, in Precious Materials Handbook
E-mail: [email protected]; thomasjustus.schmidt@psi
B. Yeo, A. Bell (2011)
Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.Journal of the American Chemical Society, 133 14
S. Raabe, Daniel Mierwaldt, J. Ciston, M. Uijttewaal, H. Stein, J. Hoffmann, Yimei Zhu, P. Blöchl, C. Jooss (2012)
In Situ Electrochemical Electron Microscopy Study of Oxygen Evolution Activity of Doped Manganite PerovskitesAdvanced Functional Materials, 22
C. Jin, Xuecheng Cao, Liya Zhang, Cong Zhang, Ruizhi Yang (2013)
Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reactionJournal of Power Sources, 241
J. Ponce, J. Rehspringer, G. Poillerat, J. Gautier (2001)
Electrochemical study of nickel-aluminium-manganese spinel NixAl1-xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline mediaElectrochimica Acta, 46
M. Miles, E. Klaus, B. Gunn, J. Locker, W. Serafin, S. Srinivasan (1978)
The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80°C in acid solutionsElectrochimica Acta, 23
F. Rosalbino, S. Delsante, G. Borzone, G. Scavino (2013)
Electrocatalytic activity of crystalline Ni-Co-M (M = Cr, Mn, Cu) alloys on the oxygen evolution reaction in an alkaline environmentInternational Journal of Hydrogen Energy, 38
M. Louie, A. Bell (2013)
An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.Journal of the American Chemical Society, 135 33
J. Koza, Zhen He, A. Miller, J. Switzer (2012)
Electrodeposition of Crystalline Co3O4—A Catalyst for the Oxygen Evolution ReactionChemistry of Materials, 24
A. Bergmann, I. Zaharieva, H. Dau, P. Strasser (2013)
Electrochemical water splitting by layered and 3D cross-linked manganese oxides: correlating structural motifs and catalytic activityEnergy and Environmental Science, 6
Y. Matsumoto, S. Yamada, T. Nishida, E. Sato (1980)
Oxygen Evolution on La1 − x Sr x Fe1 − y Co y O 3 Series OxidesJournal of The Electrochemical Society, 127
G. Beni, L. Schiavone, J. Shay, W. Dautremont-Smith, B. Schneider (1979)
Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide filmsNature, 282
Sabatier , Berichte der deutschen chemischen Gesellschaft , 1911 , 44 , 1984 - 2001
S. Hackwood, L. Schiavone, W. Dautremont-Smith, G. Beni (1981)
Anodic Evolution of Oxygen on Sputtered Iridium Oxide FilmsJournal of The Electrochemical Society, 128
M. Lyons, R. Doyle, I. Godwin, M. O'Brien, L. Russell (2012)
Hydrous Nickel Oxide: Redox Switching and the Oxygen Evolution Reaction in Aqueous Alkaline SolutionJournal of The Electrochemical Society, 159
R. Forgie, Greg Bugosh, K. Neyerlin, Zengcai Liu, P. Strasser (2010)
Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic MediaElectrochemical and Solid State Letters, 13
Karan Kadakia, M. Datta, O. Velikokhatnyi, Prashanth Jampani, S. Park, Sung‐Jae Chung, P. Kumta (2014)
High performance fluorine doped (Sn,Ru)O2 oxygen evolution reaction electro-catalysts for proton exchange membrane based water electrolysisJournal of Power Sources, 245
M. Pourbaix (1974)
Atlas of Electrochemical Equilibria in Aqueous Solutions
Benjamin Johnson, F. Girgsdies, G. Weinberg, D. Rosenthal, A. Knop‐Gericke, R. Schlögl, T. Reier, P. Strasser (2013)
Suitability of Simplified (Ir,Ti)Ox Films for Characterization during Electrocatalytic Oxygen Evolution ReactionJournal of Physical Chemistry C, 117
R. Berenguer, A. Rosa-Toro, C. Quijada, E. Morallón (2008)
Origin of the Deactivation of Spinel CuxCo3−xO4/Ti Anodes Prepared by Thermal DecompositionJournal of Physical Chemistry C, 112
Gang Wu, Ning Li, Derui Zhou, K. Mitsuo, Bo-Qing Xu (2004)
Anodically electrodeposited Co+Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline mediaJournal of Solid State Chemistry, 177
(2014)
Long Life PEM Water Electrolysis Stack Experience and Future Directions, http://www.h2fc-fair.com/hm13/images/ppt/09tu/ 1530.pdf
E. Miller, R. Rocheleau (1997)
Electrochemical Behavior of Reactively Sputtered Iron‐Doped Nickel OxideJournal of The Electrochemical Society, 144
Delahaye - Vidal and M . Figlarz
Khalid Fatih, B. Marsan (1997)
CuxCo3−xO4/LaPO4-bonded Ni electrodes for oxygen evolution in alkaline solution: preparation, physicochemical properties, and electrochemical behaviorCanadian Journal of Chemistry, 75
N. Markovic, T. Schmidt, V. Stamenkovic, P. Ross (2001)
Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective ReviewFuel Cells, 1
J. Ponce, E. Ríos, J. Rehspringer, G. Poillerat, P. Chartier, J. Gautier (1999)
Preparation of Nickel Aluminum–Manganese Spinel Oxides NixAl1−xMn2O4 for Oxygen Electrocatalysis in Alkaline Medium: Comparison of Properties Stemming from Different Preparation MethodsIEEE Journal of Solid-state Circuits, 145
A. Marshall, B. Børresen, G. Hagen, S. Sunde, M. Tsypkin, R. Tunold (2006)
Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalystsRussian Journal of Electrochemistry, 42
O. Velikokhatnyi, Karan Kadakia, M. Datta, P. Kumta (2013)
Fluorine-Doped IrO2: A Potential Electrocatalyst for Water ElectrolysisJournal of Physical Chemistry C, 117
Xu Wu, K. Scott (2011)
RuO 2 supported on Sb-doped SnO 2 nanoparticles for polymer electrolyte membrane water electrolysersFuel and Energy Abstracts
Mark Shiels (2014)
Self-recharging onsite fuel cells – Acta's fast track to hydrogen adoption for reliable telecomsFuel Cells Bulletin, 2014
M. Koper (2011)
Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysisJournal of Electroanalytical Chemistry, 660
U. Paulus, T. Schmidt, H. Gasteiger, R. Behm (2001)
Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode studyJournal of Electroanalytical Chemistry, 495
H. Willems, A. Kobussen, J. Wit, G. Broers (1984)
The oxygen evolution reaction on cobalt Part I. Reaction order experiments and impedance measurementsJournal of Electroanalytical Chemistry, 170
William Hardin, D. Slanac, Xiqing Wang, S. Dai, K. Johnston, K. Stevenson (2013)
Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal-Air Battery Electrodes.The journal of physical chemistry letters, 4 8
Charles McCrory, Suho Jung, J. Peters, T. Jaramillo (2013)
Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.Journal of the American Chemical Society, 135 45
I. Katsounaros, J. Meier, K. Mayrhofer (2013)
The impact of chloride ions and the catalyst loading on the reduction of H2O2 on high-surface-area platinum catalystsElectrochimica Acta, 110
Yuh-Shu Lee, Chi-Chang Hu, T. Wen (1996)
Oxygen Evolution on Co‐Cu‐Zn Ternary Spinel Oxide‐Coated Electrodes in Alkaline Solution Integration of Statistical, Electrochemical, and Textural ApproachesJournal of The Electrochemical Society, 143
C. Iwakura, A. Honji, H. Tamura (1981)
The anodic evolution of oxygen on Co3O4 film electrodes in alkaline solutionsElectrochimica Acta, 26
D. Galizzioli, F. Tantardini, S. Trasatti (1974)
Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytesJournal of Applied Electrochemistry, 4
I. Katsounaros, S. Cherevko, Aleksandar Zeradjanin, K. Mayrhofer (2014)
Oxygen electrochemistry as a cornerstone for sustainable energy conversion.Angewandte Chemie, 53 1
J. Boodts, S. Trasatti (1990)
Effect of Composition on the Electrocatalytic Activity of the Ternary Oxide Ru0.3Ti ( 0.7 − x ) Sn x O 2 I . Oxygen Evolution from SolutionsJournal of The Electrochemical Society, 137
Xiaohong Li, F. Walsh, D. Pletcher (2011)
Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers.Physical chemistry chemical physics : PCCP, 13 3
P. Millet, R. Ngameni, S. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etiévant (2010)
PEM water electrolyzers: From electrocatalysis to stack developmentInternational Journal of Hydrogen Energy, 35
Linping Xu, Yun-Shuang Ding, Chun‐Hu Chen, Linlin Zhao, C. Rimkus, R. Joesten, S. Suib (2008)
3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal MethodChemistry of Materials, 20
D. Galizzioli, F. Tantardini, S. Trasatti (1975)
Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutionsJournal of Applied Electrochemistry, 5
H. Bode, K. Dehmelt, J. Witte (1969)
Zur Kenntnis der Nickelhydroxidelektrode. II. Über die Oxydationsprodukte von Nickel(II)-hydroxidenZeitschrift für anorganische und allgemeine Chemie, 366
R. Kötz, S. Stucki (1985)
Oxygen Evolution and Corrosion on Ruthenium‐Iridium AlloysJournal of The Electrochemical Society, 132
H. Willems, A. Kobussen, I. Vinke, J. Wit, G. Broers (1985)
The oxygen evolution reaction on cobalt: Part II. Transient measurementsJournal of Electroanalytical Chemistry, 194
R. Yeo, J. Orehotsky, W. Visscher, S. Srinivasan (1981)
Ruthenium‐Based Mixed Oxides as Electrocatalysts for Oxygen Evolution in Acid ElectrolytesJournal of The Electrochemical Society, 128
D. Rand, R. Woods (1974)
Cyclic voltammetric studies on iridium electrodes in sulphuric acid solutionsJournal of Electroanalytical Chemistry, 55
M. Merrill, R. Dougherty (2008)
Metal Oxide Catalysts for the Evolution of O2 from H2OJournal of Physical Chemistry C, 112
J. Llopis, M. Vázquez (1966)
Passivation of ruthenium in hydrochloric acid solutionElectrochimica Acta, 11
T. Wolfram, Ş. Ellialtıoğlu (2006)
Electronic and Optical Properties of D -Band Perovskites: Lattice Green's function
Rhiyaad Mohamed, E. Fabbri, P. Levecque, R. Kötz, T. Schmidt, O. Conrad (2014)
Understanding the Influence of Carbon on the Oxygen Reduction and Evolution Activities of BSCF/Carbon Composite Electrodes in Alkaline Electrolyte, 58
M. Koper (2013)
Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining stepsJournal of Solid State Electrochemistry, 17
M. Kibria, Moniruzzaman Mridha (1996)
Electrochemical studies of the nickel electrode for the oxygen evolution reactionInternational Journal of Hydrogen Energy, 21
R. Kötz, H. Lewerenz, S. Stucki (1983)
XPS Studies of Oxygen Evolution on Ru and RuO2 AnodesJournal of The Electrochemical Society, 130
Lena Trotochaud, James Ranney, Kerisha Williams, S. Boettcher (2012)
Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.Journal of the American Chemical Society, 134 41
J. Bockris, T. Otagawa (1983)
Mechanism of oxygen evolution on perovskitesThe Journal of Physical Chemistry, 87
Thomas Wolfram, Ş. Ellialtıoğlu (2006)
Electronic and Optical Properties of D -Band Perovskites: Distorted perovskites
E. Frazer, R. Woods (1979)
The oxygen evolution reaction on cycled iridium electrodesJournal of Electroanalytical Chemistry, 102
(1956)
A. I. Krasil'shchkov
M. Najafpour, Davood Sedigh (2013)
Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication.Dalton transactions, 42 34
L. Brossard (1992)
Cobalt black electrodes for the oxygen evolution reaction from electrolysis of 40 wt% KOHInternational Journal of Hydrogen Energy, 17
R. Kötz, H. Neff, S. Stucki (1984)
Anodic Iridium Oxide Films XPS‐Studies of Oxidation State Changes andJournal of The Electrochemical Society, 131
P. Lu, S. Srinivasan (1978)
Electrochemical‐Ellipsometric Studies of Oxide Film Formed on Nickel during Oxygen EvolutionJournal of The Electrochemical Society, 125
H. Bode, K. Dehmelt, J. Witte (1966)
Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydratElectrochimica Acta, 11
A. Grimaud, Kevin May, C. Carlton, Yueh-Lin Lee, M. Risch, W. Hong, Jigang Zhou, Y. Shao-horn (2013)
Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solutionNature Communications, 4
J. Rossmeisl, Á. Logadóttir, J. Nørskov (2005)
Electrolysis of water on (oxidized) metal surfacesChemical Physics, 319
A. Damjanović, A. Dey, J. Bockris (1966)
Electrode Kinetics of Oxygen Evolution and Dissolution on Rh, Ir, and Pt‐Rh Alloy ElectrodesJournal of The Electrochemical Society, 113
To support a sustainable economic growth, it has become more and more important that the energy utilization efficiency and the renewable energy implementation should be further exploited. Primary renewable energy sources, such as wind and solar power, have the advantages of being sustainable and relatively benign in terms of impact on the environment and human health. However, a significant disadvantage of most renewable energy sources is that they are intermittent on daily, seasonal and also regional scales with considerable variability in supply. This uncertainty in energy supply can be eliminated by connecting a local energy storage system to an electricity producing unit.1 In this framework, water electrolysers can play a fundamental role in the development of a sustainable energy system. Water electrolysers are electrochemical energy conversion devices producing hydrogen (and oxygen) from the intermittent energy source. The hydrogen energy vector represents an alternative to electricity storage in batteries since its reconversion into electricity via fuel cells opens up independent scaling of power and energy due to the separation of the hydrogen storage from the conversion device.
Catalysis Science & Technology – Royal Society of Chemistry
Published: Oct 6, 2014
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.