Access the full text.
Sign up today, get DeepDyve free for 14 days.
Xiaoxin Zou, Xiaoxi Huang, A. Goswami, Rafael Silva, B. Sathe, E. Mikmeková, Tewodros Asefa (2014)
Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values.Angewandte Chemie, 53 17
Wei-Fu Chen, K. Sasaki, Chao Ma, A. Frenkel, N. Marinkovic, J. Muckerman, Yimei Zhu, R. Adzic (2012)
Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets.Angewandte Chemie, 51 25
Heron Vrubel, Xile Hu (2012)
Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions.Angewandte Chemie, 51 51
Mark Lukowski, Andrew Daniel, Fei Meng, Audrey Forticaux, Linsen Li, Song Jin (2013)
Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets.Journal of the American Chemical Society, 135 28
J. Greeley, T. Jaramillo, J. Bonde, I. Chorkendorff, J. Nørskov (2006)
Computational high-throughput screening of electrocatalytic materials for hydrogen evolutionNature Materials, 5
N. Danilovic, Ram Subbaraman, D. Strmcnik, Kee-Chul Chang, A. Paulikas, V. Stamenkovic, N. Markovic (2012)
Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts.Angewandte Chemie, 51 50
A. Bandyopadhyay, Kelly McCarthy, Michael Kelly, Jianmin Gao (2015)
Targeting Bacteria via Iminoboronate Chemistry of Amine-Presenting LipidsNature communications, 6
D. Esposito, S. Hunt, A. Stottlemyer, K. Dobson, B. McCandless, R. Birkmire, Jingguang Chen (2010)
Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates.Angewandte Chemie, 49 51
Yifei Yu, Sheng-yang Huang, Yanpeng Li, S. Steinmann, Weitao Yang, Linyou Cao (2013)
Layer-dependent electrocatalysis of MoS2 for hydrogen evolution.Nano letters, 14 2
W. Sheng, MyatNoeZin Myint, Jingguang Chen, Yushan Yan (2013)
Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfacesEnergy and Environmental Science, 6
Siguo Chen, Zidong Wei, X. Qi, Lichun Dong, Yu‐Guo Guo, L. Wan, Z. Shao, Li Li (2012)
Nanostructured polyaniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity.Journal of the American Chemical Society, 134 32
H. Yin, Shenlong Zhao, K. Zhao, Abdul Muqsit, Hongjie Tang, Lin Chang, Huijun Zhao, Yan Gao, Z. Tang (2015)
Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activityNature Communications, 6
Haotian Wang, Zhiyi Lu, Shicheng Xu, Desheng Kong, J. Cha, G. Zheng, Po-Chun Hsu, Kai Yan, D. Bradshaw, F. Prinz, Yi Cui (2013)
Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reactionProceedings of the National Academy of Sciences, 110
John Turner (1999)
A realizable renewable energy futureScience, 285 5428
Liang Cheng, Wenjing Huang, Qiufang Gong, Changhai Liu, Zhuang Liu, Yanguang Li, H. Dai (2014)
Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction.Angewandte Chemie, 53 30
Yang Yang, H. Fei, G. Ruan, Changsheng Xiang, J. Tour (2014)
Edge‐Oriented MoS2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor DevicesAdvanced Materials, 26
Yong Zhao, Ryuhei Nakamura, K. Kamiya, Shuji Nakanishi, K. Hashimoto (2013)
Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidationNature Communications, 4
J. Bonnelle, J. Grimblot, A. D'huysser (1975)
Influence de la polarisation des liaisons sur les spectres esca des oxydes de cobalt
Ming Gong, Wu Zhou, Mon-Che Tsai, Jigang Zhou, Mingyun Guan, Meng‐Chang Lin, Bo Zhang, Yongfeng Hu, Di-Yan Wang, Jiang Yang, S. Pennycook, B. Hwang, H. Dai (2014)
Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysisNature Communications, 5
A. Damian, S. Omanovic (2006)
Ni and NiMo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrixJournal of Power Sources, 158
Saioa Cobo, J. Heidkamp, P. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero (2012)
A Janus cobalt-based catalytic material for electro-splitting of water.Nature materials, 11 9
J. Nørskov, T. Bligaard, J. Rossmeisl, C. Christensen (2009)
Towards the computational design of solid catalysts.Nature chemistry, 1 1
(2011)
Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in waterChemical Science, 2
Xiaoli Zheng, Jianbo Xu, Keyou Yan, Hong Wang, Zilong Wang, Shihe Yang (2014)
Space-Confined Growth of MoS2 Nanosheets within Graphite: The Layered Hybrid of MoS2 and Graphene as an Active Catalyst for Hydrogen Evolution ReactionChemistry of Materials, 26
Minrui Gao, Jin-Xia Liang, Ya-Rong Zheng, Yunfei Xu, Jun Jiang, Q. Gao, Jun Li, Shuhong Yu (2015)
An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generationNature Communications, 6
D. Voiry, H. Yamaguchi, Junwen Li, Rafael Silva, D. Alves, T. Fujita, Mingwei Chen, Tewodros Asefa, V. Shenoy, G. Eda, M. Chhowalla (2012)
Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.Nature materials, 12 9
Junfeng Xie, Jiajia Zhang, Shuang Li, Fabian Grote, Xiaodong Zhang, Hao Zhang, Ruoxing Wang, Y. Lei, B. Pan, Yi Xie (2013)
Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution.Journal of the American Chemical Society, 135 47
E. Popczun, Carlos Read, Christopher Roske, N. Lewis, R. Schaak (2014)
Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles.Angewandte Chemie, 53 21
James McKone, B. Sadtler, Caroline Werlang, N. Lewis, H. Gray (2013)
Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen EvolutionACS Catalysis, 3
N. Jarrah, Fahong Li, J. Ommen, L. Lefferts (2005)
Immobilization of a layer of carbon nanofibres (CNFs) on Ni foam: A new structured catalyst supportJournal of Materials Chemistry, 15
H. Dai, Y. Liang, Ping Wang, X. Yao, T. Rufford, M. Lu, Hui‐Ming Cheng (2008)
High-performance cobalt-tungsten-boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solutionInternational Journal of Hydrogen Energy, 33
Xiao Huang, Zhiyuan Zeng, Shuyu Bao, Mengfei Wang, X. Qi, Zhanxi Fan, Hua Zhang (2013)
Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheetsNature Communications, 4
Wei Gao, Sirilak Sattayasamitsathit, J. Orozco, Joseph Wang (2011)
Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes.Journal of the American Chemical Society, 133 31
Zhiyuan Zeng, Chaoliang Tan, Xiao Huang, Shuyu Bao, Hua Zhang (2014)
Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reactionEnergy and Environmental Science, 7
J. Kibsgaard, T. Jaramillo (2014)
Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction.Angewandte Chemie, 53 52
B. Tan, K. Klabunde, P. Sherwood (1991)
XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silicaJournal of the American Chemical Society, 113
Tanyuan Wang, Junqiao Zhuo, Kuangzhou Du, Bingbo Chen, Zhiwei Zhu, Y. Shao, Meixian Li (2014)
Electrochemically Fabricated Polypyrrole and MoSx Copolymer Films as a Highly Active Hydrogen Evolution ElectrocatalystAdvanced Materials, 26
James Gerken, J. McAlpin, Jamie Chen, Matthew Rigsby, William Casey, R., David Britt, Shannon Stahl (2011)
Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity.Journal of the American Chemical Society, 133 36
D. Brown, M. Mahmood, A. Turner, S. Hall, P. Fogarty (1981)
Low overvoltage electrocatalysts for hydrogen evolving electrodesInternational Journal of Hydrogen Energy, 7
Junze Chen, Xue-jun Wu, Lisha Yin, Bing Li, Xun Hong, Zhanxi Fan, Bo Chen, Can Xue, Hua Zhang (2015)
One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution.Angewandte Chemie, 54 4
R. Parsons (1958)
The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogenTransactions of The Faraday Society, 54
M. Faber, Rafal Dziedzic, Mark Lukowski, N. Kaiser, Qi Ding, Song Jin (2014)
High-performance electrocatalysis using metallic cobalt pyrite (CoS₂) micro- and nanostructures.Journal of the American Chemical Society, 136 28
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai (2009)
Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen ReductionScience, 323
Jieun Yang, D. Voiry, Seongjoon Ahn, Dongwoon Kang, A. Kim, M. Chhowalla, H. Shin (2013)
Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution.Angewandte Chemie, 52 51
J. Kibsgaard, Zhebo Chen, Benjamin Reinecke, T. Jaramillo (2012)
Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis.Nature materials, 11 11
H. Wu, B.Y. Xia, Le Yu, Xin‐Yao Yu, X. Lou (2015)
Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen productionNature Communications, 6
Jingqi Tian, Qian Liu, Abdullah Asiri, Xuping Sun (2014)
Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14.Journal of the American Chemical Society, 136 21
Timothy Cook, Dilek Dogutan, Steven Reece, Y. Surendranath, Thomas Teets, D. Nocera (2010)
Solar energy supply and storage for the legacy and nonlegacy worlds.Chemical reviews, 110 11
Qian Liu, Jingqi Tian, W. Cui, P. Jiang, N. Cheng, Abdullah Asiri, Xuping Sun (2014)
Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution.Angewandte Chemie, 53 26
Yanguang Li, Hailiang Wang, Liming Xie, Yongye Liang, Guosong Hong, H. Dai (2011)
MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction.Journal of the American Chemical Society, 133 19
Yao Zheng, Y. Jiao, Yihan Zhu, Luhua Li, Yu Han, Y. Chen, A. Du, M. Jaroniec, S. Qiao (2014)
Hydrogen evolution by a metal-free electrocatalystNature Communications, 5
Hybrid electrocatalysts with excellent electrocatalytic activity for hydrogen reduction are fabricated using an efficient and facile electrochemical route. The electronic and synergistic effects between Co(OH)2 and polyaniline (PANI) in the composite structure are the key factors that generate the high electrocatalytic activity and excellent stability. A highly efficient, non‐precious metal‐based flexible electrocatalyst for high‐performance electrocatalysts is shown, which reveals a novel route for the design and synthesis of electrocatalysts.
Advanced Materials – Wiley
Published: Nov 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.