Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Weber, J. Muijsers, J. Niemantsverdriet (1995)
Structure of Amorphous MoS3The Journal of Physical Chemistry, 99
M. Kanan, Y. Surendranath, D. Nocera (2009)
Cobalt-phosphate oxygen-evolving compound.Chemical Society reviews, 38 1
S. Chiam, Binayak Dasgupta, D. Soler, M. Leung, Hongjun Liu, Z. Ooi, L. Wong, Changyun Jiang, K. Chang, J. Zhang (2012)
Investigating the stability of defects in MoO3 and its role in organic solar cellsSolar Energy Materials and Solar Cells, 99
Xingwang Zhang, Fei Meng, Shun Mao, Qi Ding, Melinda Shearer, M. Faber, Junhong Chen, R. Hamers, Song Jin (2015)
Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generationEnergy and Environmental Science, 8
Mark Lukowski, Andrew Daniel, Fei Meng, Audrey Forticaux, Linsen Li, Song Jin (2013)
Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets.Journal of the American Chemical Society, 135 28
L. Benoist, D. Gonbeau, G. Pfister-guillouzo, E. Schmidt, G. Meunier, A. Levasseur (1995)
X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin filmsThin Solid Films, 258
Gregory Hutchings, Yan Zhang, Jian Li, Bryan Yonemoto, Xinggui Zhou, Kake Zhu, F. Jiao (2015)
In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts.Journal of the American Chemical Society, 137 12
J. Kibsgaard, T. Jaramillo, F. Besenbacher (2014)
Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters.Nature chemistry, 6 3
D. Bélanger, G. Laperrière, B. Marsan (1993)
The electrodeposition of amorphous molybdenum sulfideJournal of Electroanalytical Chemistry, 347
T. Okamura, Miki Tatsumi, Yui Omi, Hitoshi Yamamoto, K. Onitsuka (2012)
Selective and effective stabilization of Mo(VI)═O bonds by NH···S hydrogen bonds via trans influence.Inorganic chemistry, 51 21
B. Hinnemann, P. Moses, J. Bonde, K. Jørgensen, J. Nielsen, S. Horch, I. Chorkendorff, J. Nørskov (2005)
Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution.Journal of the American Chemical Society, 127 15
P. Tran, S. Chiam, P. Boix, Yi Ren, S. Pramana, J. Fize, V. Artero, J. Barber (2013)
Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from waterEnergy and Environmental Science, 6
B. Lassalle‐Kaiser, Daniel Merki, H. Vrubel, S. Gul, V. Yachandra, Xile Hu, J. Yano (2014)
Evidence from in Situ X-ray Absorption Spectroscopy for the Involvement of Terminal Disulfide in the Reduction of Protons by an Amorphous Molybdenum Sulfide ElectrocatalystJournal of the American Chemical Society, 137
Xianluo Hu, Wei Zhang, Xiaoxiao Liu, Yueni Mei, Yunhui Huang (2015)
Nanostructured Mo-based electrode materials for electrochemical energy storage.Chemical Society reviews, 44 8
Jesse Benck, Zhebo Chen, L. Kuritzky, Arnold Forman, T. Jaramillo (2012)
Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic ActivityACS Catalysis, 2
B. Seger, A. Laursen, P. Vesborg, T. Pedersen, O. Hansen, S. Dahl, I. Chorkendorff (2012)
Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode.Angewandte Chemie, 51 36
A. Goff, V. Artero, B. Jousselme, P. Tran, N. Guillet, Romain Métayé, Aziz Fihri, S. Palacin, M. Fontecave (2009)
From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H2 Production and UptakeScience, 326
Daniel Merki, S. Fierro, H. Vrubel, Xile Hu (2011)
Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in waterChemical Science, 2
E. Andreiadis, P. Jacques, P. Tran, A. Leyris, M. Chavarot‐Kerlidou, B. Jousselme, M. Matheron, J. Pécaut, S. Palacin, M. Fontecave, V. Artero (2013)
Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H₂ evolution under fully aqueous conditions.Nature chemistry, 5 1
Yufeng Huang, Robert Nielsen, W. Goddard, M. Soriaga (2015)
The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS2.Journal of the American Chemical Society, 137 20
T. Shibahara, M. Yamasaki, G. Sakane, K. Minami, T. Yabuki, A. Ichimura (1992)
Syntheses and electrochemistry of incomplete cubane-type clusters with M3S4 cores (M = molybdenum, tungsten). X-ray structures of [W3S4(H2O)9](CH3C6H4SO3)4.cntdot.9H2O, Na2[W3S4(Hnta)3].cntdot.5H2O, and (bpyH)5[W3S4(NCS)9].cntdot.3H2OInorganic Chemistry, 31
D. Voiry, H. Yamaguchi, Junwen Li, Rafael Silva, D. Alves, T. Fujita, Mingwei Chen, T. Asefa, V. Shenoy, G. Eda, M. Chhowalla (2012)
Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.Nature materials, 12 9
L. Busetto, A. Vaccari, G. Martini (1981)
Electron spin resonance of paramagnetic species as a tool for studying the thermal decomposition of molybdenum trisulfideThe Journal of Physical Chemistry, 85
H. Vrubel, Xile Hu (2013)
Growth and Activation of an Amorphous Molybdenum Sulfide Hydrogen Evolving CatalystACS Catalysis, 3
Michael Huynh, D. Bediako, D. Nocera (2014)
A functionally stable manganese oxide oxygen evolution catalyst in acid.Journal of the American Chemical Society, 136 16
Zhongjie Huang, Wenjia Luo, Lu Ma, Mingzhe Yu, Xiaodi Ren, Mingfu He, Shane Polen, Kevin Click, Benjamin Garrett, Jun Lu, K. Amine, C. Hadad, Weilin Chen, A. Asthagiri, Yiying Wu (2015)
Dimeric [Mo2 S12 ](2-) Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis.Angewandte Chemie, 54 50
A. Müller, V. Fedin, K. Hegetschweiler, W. Amrein (1992)
Characterization of amorphous substances by studying isotopically labelled compounds with FAB–MS: evidence for extrusion of triangular Mo3IV clusters from a mixture of 92MoS3 and 100MoS3 by reaction with OH–Journal of The Chemical Society, Chemical Communications
T Bourgeteau (2013)
A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cellEnergy Environ. Sci., 6
T. Jaramillo, J. Bonde, Jingdong Zhang, B. Ooi, K. Andersson, J. Ulstrup, I. Chorkendorff (2008)
Hydrogen Evolution on Supported Incomplete Cubane-type (Mo3S4) 4+ ElectrocatalystsJournal of Physical Chemistry C, 112
T. Weber, J. Muijsers, J. Wolput, C. Verhagen, J. Niemantsverdriet (1996)
Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopyThe Journal of Physical Chemistry, 100
James McKone, N. Lewis, H. Gray (2014)
Will Solar-Driven Water-Splitting Devices See the Light of Day?Chemistry of Materials, 26
X Zhang (2015)
Amorphous MoS x Cl y electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generationEnergy Environ. Sci., 8
Carlos Morales-Guio, Xile Hu (2014)
Amorphous molybdenum sulfides as hydrogen evolution catalysts.Accounts of chemical research, 47 8
I. Zaharieva, M. Najafpour, Mathias Wiechen, M. Haumann, Philipp Kurz, H. Dau (2011)
Synthetic manganese–calcium oxides mimic the water-oxidizing complex of photosynthesis functionally and structurallyEnergy and Environmental Science, 4
T. Jaramillo, K. Jørgensen, J. Bonde, J. Nielsen, S. Horch, I. Chorkendorff (2007)
Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 NanocatalystsScience, 317
Hong Li, Charlie Tsai, A. Koh, Lili Cai, A. Contryman, Alex Fragapane, Jiheng Zhao, Hyun Han, H. Manoharan, F. Abild-Pedersen, J. Nørskov, Xiaolin Zheng (2016)
Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies.Nature materials, 15 1
Tiphaine Bourgeteau, D. Tondelier, B. Geffroy, Romain Brisse, C. Laberty‐Robert, S. Campidelli, R. Bettignies, V. Artero, S. Palacin, B. Jousselme (2013)
A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell.Energy, sustainability and society, 6 9
H. Sugimoto, Susumu Tatemoto, K. Toyota, Kenji Ashikari, M. Kubo, T. Ogura, S. Itoh (2013)
Oxo-sulfido- and oxo-selenido-molybdenum(VI) complexes possessing a dithiolene ligand related to the active sites of hydroxylases of molybdoenzymes: low temperature preparation and characterisation.Chemical communications, 49 39
Desheng Kong, Haotian Wang, J. Cha, M. Pasta, K. Koski, Jie Yao, Yi Cui (2013)
Synthesis of MoS2 and MoSe2 films with vertically aligned layers.Nano letters, 13 3
D. Shevchenko, M. Anderlund, Anders Thapper, S. Styring (2011)
Photochemical water oxidation with visible light using a cobalt containing catalystEnergy and Environmental Science, 4
Y. Hou, B. Abrams, P. Vesborg, M. Björketun, K. Herbst, L. Bech, Alessandro Setti, C. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. Nørskov, I. Chorkendorff (2011)
Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution.Nature materials, 10 6
P. Tran, S. Pramana, V. Kale, M. Nguyen, S. Chiam, Sudip Batabyal, L. Wong, J. Barber, J. Loo (2012)
Novel assembly of an MoS2 electrocatalyst onto a silicon nanowire array electrode to construct a photocathode composed of elements abundant on the earth for hydrogen generation.Chemistry, 18 44
T Shibahara (1992)
Syntheses and electrochemistry of incomplete cubane-type clusters with M3S4 cores (M = Mo, W). X-ray structures of [W3S4(H2O)9](CH3C6H4SO3)4.9H2O, Na2[W3S4(Hnta)3].5H2O, and (bpyH)5[W3S4(NCS)9].3H2OInorg. Chem., 31
Miguel Cabán-Acevedo, Michael Stone, J. Schmidt, Joseph Thomas, Qi Ding, Hung-Chih Chang, M. Tsai, Jr-hau He, Song Jin (2015)
Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide.Nature materials, 14 12
N. Kornienko, Joaquin Resasco, Nigel Becknell, Chang‐Ming Jiang, Yi-sheng Liu, Kaiqi Nie, Xuhui Sun, Jinghua Guo, S. Leone, P. Yang (2015)
Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst.Journal of the American Chemical Society, 137 23
James McKone, S. Marinescu, B. Brunschwig, J. Winkler, H. Gray (2014)
Earth-abundant hydrogen evolution electrocatalystsChemical Science, 5
J. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsøe, B. Clausen, E. Laegsgaard, F. Besenbacher (2007)
Size-dependent structure of MoS2 nanocrystals.Nature nanotechnology, 2 1
Carlos Morales-Guio, S. Tilley, H. Vrubel, M. Grätzel, Xile Hu (2014)
Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalystNature Communications, 5
E. Gibney (2015)
The super materials that could trump grapheneNature, 522
J. Kibsgaard, Zhebo Chen, Benjamin Reinecke, T. Jaramillo (2012)
Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis.Nature materials, 11 11
R. Dessapt, C. Simonnet-Jégat, Alain Mallard, H. Lavanant, J. Marrot, F. Sécheresse (2003)
Novel Mo(V)-dithiolene compounds: characterization of nonsymmetric dithiolene complexes by electrospray ionization mass spectrometry.Inorganic chemistry, 42 20
T. Huan, Reuben Jane, A. Benayad, L. Guetaz, P. Tran, V. Artero (2016)
Bio-inspired noble metal-free nanomaterials approaching platinum performances for H2 evolution and uptakeEnergy and Environmental Science, 9
A. Müller, V. Wittneben, E. Krickemeyer, H. Bögge, M. Lemke (1991)
Studies on the triangular cluster [Mo3S13]2−: Electronic structure (Xα calculations, XPS), crystal structure of (Ph4As)2[Mo3S13]. 2CH3CN and a refinement of the crystal structure of (NH4)2[Mo3s13]·H2OZeitschrift für anorganische und allgemeine Chemie, 605
Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoS x ), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoS x , prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13]2− building blocks. Of the three terminal disulfide (S2 2−) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoS x catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum.
Nature Materials – Springer Journals
Published: Mar 14, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.