Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Pataer, S. Swisher, J. Roth, C. Logothetis, P. Corn (2009)
Inhibition of RNA-dependent protein kinase (PKR) leads to cancer cell death and increases chemosensitivityCancer Biology & Therapy, 8
Steve Kim, S. Gunnery, J. Choe, M. Mathews (2002)
Neoplastic progression in melanoma and colon cancer is associated with increased expression and activity of the interferon-inducible protein kinase, PKROncogene, 21
Hao Jiang, S. Wek, Barbara Mcgrath, D. Scheuner, R. Kaufman, D. Cavener, R. Wek (2003)
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses.Molecular and cellular biology, 23 16
W. Wilson, A. Baldwin (2008)
Maintenance of constitutive IkappaB kinase activity by glycogen synthase kinase-3alpha/beta in pancreatic cancer.Cancer research, 68 19
Aseem Kumar, Yi‐Li Yang, V. Flati, S. Der, S. Kadereit, A. Deb, Jaharul Haque, L. Reis, C. Weissmann, B. Williams (1997)
Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF‐1 and NF‐κBThe EMBO Journal, 16
U. Holzen, A. Pataer, U. Raju, D. Bocangel, S. Vorburger, Yanna Liu, Xiaolin Lu, J. Roth, B. Aggarwal, G. Barber, K. Keyomarsi, K. Hunt, S. Swisher (2007)
The Double-Stranded RNA-Activated Protein Kinase Mediates Radiation Resistance in Mouse Embryo Fibroblasts through Nuclear Factor κB and Akt ActivationClinical Cancer Research, 13
James Fernandez, I. Yaman, P. Sarnow, M. Snider, M. Hatzoglou (2002)
Regulation of Internal Ribosomal Entry Site-mediated Translation by Phosphorylation of the Translation Initiation Factor eIF2α*The Journal of Biological Chemistry, 277
T. Braun, G. Carvalho, C. Fabre, J. Grosjean, P. Fenaux, G. Kroemer (2006)
Targeting NF-κB in hematologic malignanciesCell Death and Differentiation, 13
D. Baltzis, Suiyang Li, A. Koromilas (2002)
Functional Characterization of pkr Gene Products Expressed in Cells from Mice with a Targeted Deletion of the N terminus or C terminus Domain of PKR*The Journal of Biological Chemistry, 277
Y. Kuo, Kai Huang, Chung-Hsiang Yang, Yu-San Yang, W. Lee, C. Chiang (2008)
Regulation of Phosphorylation of Thr-308 of Akt, Cell Proliferation, and Survival by the B55α Regulatory Subunit Targeting of the Protein Phosphatase 2A Holoenzyme to Akt*Journal of Biological Chemistry, 283
O. Donzé, Jing Deng, J. Curran, R. Sladek, D. Picard, N. Sonenberg (2004)
The protein kinase PKR: a molecular clock that sequentially activates survival and death programsThe EMBO Journal, 23
Shirin Kazemi, Z. Mounir, D. Baltzis, Jennifer Raven, Shuo Wang, J. Krishnamoorthy, O. Pluquet, J. Pelletier, A. Koromilas (2007)
A Novel Function of eIF2α Kinases as Inducers of the Phosphoinositide-3 Kinase Signaling PathwayMolecular Biology of the Cell, 18
T. Braun, G. Carvalho, C. Fabre, J. Grosjean, P. Fenaux, G. Kroemer (2006)
Targeting NF-kappaB in hematologic malignancies.Cell death and differentiation, 13 5
A. Martelli, P. Tazzari, C. Evangelisti, F. Chiarini, W. Blalock, A. Billi, L. Manzoli, J. McCubrey, L. Cocco (2007)
Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside.Current medicinal chemistry, 14 19
Y. Takada, H. Ichikawa, A. Pataer, S. Swisher, B. Aggarwal (2007)
Genetic deletion of PKR abrogates TNF-induced activation of IkappaBalpha kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activation.Oncogene, 26 8
C. Calkhoven, Christine Müller, Achim Leutz (2000)
Translational control of C/EBPalpha and C/EBPbeta isoform expression.Genes & development, 14 15
H. Eley, P. McDonald, S. Russell, M. Tisdale (2009)
Inhibition of activation of dsRNA-dependent protein kinase and tumour growth inhibitionCancer Chemotherapy and Pharmacology, 63
Y. Takada, H. Ichikawa, A. Pataer, S. Swisher, B. Aggarwal (2007)
Genetic deletion of PKR abrogates TNF-induced activation of IκBα kinase, JNK, Akt and cell proliferation but potentiates p44/p42 MAPK and p38 MAPK activationOncogene, 26
B. Aggarwal (2004)
Nuclear factor-κB: The enemy withinCancer Cell, 6
R. Bennett, W. Blalock, Dean Abtahi, Yu Pan, S. Moyer, W. May (2006)
RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy, and viral infection.Blood, 108 3
H. Harada, T. Kondo, S. Ogawa, T. Tamura, M. Kitagawa, N. Tanaka, M. Lamphier, H. Hirai, T. Taniguchi (1994)
Accelerated exon skipping of IRF-1 mRNA in human myelodysplasia/leukemia; a possible mechanism of tumor suppressor inactivation.Oncogene, 9 11
M. Bonnet, R. Weil, E. Dam, A. Hovanessian, E. Meurs (2000)
PKR Stimulates NF-κB Irrespective of Its Kinase Function by Interacting with the IκB Kinase ComplexMolecular and Cellular Biology, 20
Zan Xu, B. Williams (2000)
The B56α Regulatory Subunit of Protein Phosphatase 2A Is a Target for Regulation by Double-Stranded RNA-Dependent Protein Kinase PKRMolecular and Cellular Biology, 20
Steve Kim, Adam Forman, M. Mathews, S. Gunnery (2000)
Human breast cancer cells contain elevated levels and activity of the protein kinase, PKROncogene, 19
J. McCubrey, Linda Steelman, Stephen Abrams, F. Bertrand, D. Ludwig, J. Bäsecke, M. Libra, F. Stivala, M. Milella, A. Tafuri, P. Lunghi, A. Bonati, A. Martelli, A. Martelli (2008)
Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapyLeukemia, 22
(2007)
and in a subset of acute myeloid leukemias with del ( 5 ) ( q 31 )
Olivier Donzé, Rosemary Jagus, A. Koromilas, John Hershey, N. Sonenberg (1995)
Abrogation of translation initiation factor eIF‐2 phosphorylation causes malignant transformation of NIH 3T3 cells.The EMBO Journal, 14
Shirin Kazemi, Z. Mounir, D. Baltzis, Jennifer Raven, Shuo Wang, J. Krishnamoorthy, O. Pluquet, J. Pelletier, A. Koromilas (2007)
A Novel Function of eIF 2 Kinases as Inducers of the Phosphoinositide-3 Kinase Signaling Pathway
M. Nyåkern, P. Tazzari, C. Finelli, C. Bosi, M. Follo, T. Grafone, P. Piccaluga, Giovanni Martinelli, L. Cocco, Alberto Martelli, Alberto Martelli (2006)
Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patientsLeukemia, 20
Hao Jiang, S. Wek, Barbara Mcgrath, D. Scheuner, R. Kaufman, D. Cavener, R. Wek (2003)
Phosphorylation of the α Subunit of Eukaryotic Initiation Factor 2 Is Required for Activation of NF-κB in Response to Diverse Cellular StressesMolecular and Cellular Biology, 23
X. Saelens, M. Kalai, P. Vandenabeele (2001)
Translation Inhibition in ApoptosisThe Journal of Biological Chemistry, 276
S. Hii, Lani Hardy, T. Crough, E. Payne, K. Grimmett, D. Gill, N. McMillan (2004)
Loss of PKR activity in chronic lymphocytic leukemiaInternational Journal of Cancer, 109
Narasimham Jammi, Landon Whitby, P. Beal (2003)
Small molecule inhibitors of the RNA-dependent protein kinase.Biochemical and biophysical research communications, 308 1
Fan Zhang, P. Romano, T. Nagamura-Inoue, B. Tian, T. Dever, M. Mathews, K. Ozato, A. Hinnebusch (2001)
Binding of Double-stranded RNA to Protein Kinase PKR Is Required for Dimerization and Promotes Critical Autophosphorylation Events in the Activation Loop*The Journal of Biological Chemistry, 276
Michael Fink, Ulrich Kleeberg, Stefan Bartels (2015)
Adjuvant Therapy Reduces Rate of Dissemination but Shortens Survival Thereafter.The oncologist, 20 7
M. Zamanian-Daryoush, S. Der, B. Williams (1999)
Cell cycle regulation of the double stranded RNA activated protein kinase, PKROncogene, 18
Y. Lavrovsky, M. Schwartzman, R. Levere, A. Kappas, N. Abraham (1994)
Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene.Proceedings of the National Academy of Sciences of the United States of America, 91 13
M. Follo, C. Finelli, S. Mongiorgi, C. Clissa, C. Bosi, G. Martinelli, W. Blalock, L. Cocco, A. Martelli (2008)
PKR is activated in MDS patients and its subcellular localization depends on disease severityLeukemia, 22
D. Scheuner, Rupali Patel, Feng Wang, Kuei Lee, Kotlo Kumar, Jun Wu, A. Nilsson, M. Karin, R. Kaufman (2006)
Double-stranded RNA-dependent Protein Kinase Phosphorylation of the α-Subunit of Eukaryotic Translation Initiation Factor 2 Mediates Apoptosis*Journal of Biological Chemistry, 281
Y. Xu, K. Kiningham, M. Devalaraja, C. Yeh, H. Majima, E. Kasarskis, D. Clair (1999)
An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta.DNA and cell biology, 18 9
D. Baltzis, O. Pluquet, A. Papadakis, Shirin Kazemi, Like Qu, A. Koromilas (2007)
The eIF2α Kinases PERK and PKR Activate Glycogen Synthase Kinase 3 to Promote the Proteasomal Degradation of p53*Journal of Biological Chemistry, 282
C. Fabre, G. Carvalho, E. Tasdemir, T. Braun, L. Adès, J. Grosjean, S. Boehrer, D. Métivier, S. Souquere, G. Pierron, P. Fenaux, G. Kroemer (2007)
NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia.Oncogene, 26 28
EK-H Han, J. Leverson, T. Mcgonigal, OJ Shah, KW Woods, T. Hunter, VL Giranda, Y. Luo (2007)
Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibitionOncogene, 26
A. Ougolkov, N. Bone, M. Fernandez-Zapico, N. Kay, D. Billadeau (2007)
Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells.Blood, 110 2
Jing Deng, Phoebe Lu, Yuhong Zhang, D. Scheuner, R. Kaufman, N. Sonenberg, H. Harding, D. Ron (2004)
Translational Repression Mediates Activation of Nuclear Factor Kappa B by Phosphorylated Translation Initiation Factor 2Molecular and Cellular Biology, 24
S. Srivastava, Kotlo Kumar, R. Kaufman (1998)
Phosphorylation of Eukaryotic Translation Initiation Factor 2 Mediates Apoptosis in Response to Activation of the Double-stranded RNA-dependent Protein Kinase*The Journal of Biological Chemistry, 273
G. Gerlitz, R. Jagus, O. Elroy-Stein (2002)
Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation.European journal of biochemistry, 269 11
V. Ruvolo, S. Kurinna, Kul Karanjeet, T. Schuster, A. Martelli, J. McCubrey, P. Ruvolo (2008)
PKR Regulates B56α-mediated BCL2 Phosphatase Activity in Acute Lymphoblastic Leukemia-derived REH Cells*Journal of Biological Chemistry, 283
WB Green, M. Slovak, I. Chen, M. Pallavicini, J. Hecht, C. Willman (1999)
Lack of IRF-1 expression in acute promyelocytic leukemia and in a subset of acute myeloid leukemias with del(5)(q31)Leukemia, 13
Linda Steelman, Stephen Abrams, J. Whelan, F. Bertrand, D. Ludwig, J. Bäsecke, M. Libra, F. Stivala, M. Milella, A. Tafuri, P. Lunghi, A. Bonati, A. Martelli, J. McCubrey (2008)
Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemiaLeukemia, 22
Tianyan Gao, F. Furnari, A. Newton (2005)
PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth.Molecular cell, 18 1
S. Plummer, K. Holloway, M. Manson, R. Munks, A. Kaptein, S. Farrow, L. Howells (1999)
Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complexOncogene, 18
S. Datta, A. Brunet, M. Greenberg (1999)
Cellular survival: a play in three Akts.Genes & development, 13 22
H. Kim, N. Hawke, A. Baldwin (2006)
NF-kappaB and IKK as therapeutic targets in cancer.Cell death and differentiation, 13 5
H. Kim, N. Hawke, A. Baldwin (2006)
NF-κB and IKK as therapeutic targets in cancerCell Death and Differentiation, 13
Yi‐Li Yang, Luiz Reis, J. Pavlovic, A. Aguzzi, R. Schafer, Aseem Kumar, B. Williams, M. Aguet, C. Weissmann (1995)
Deficient signaling in mice devoid of double‐stranded RNA‐dependent protein kinase.The EMBO Journal, 14
María García, J. Gil, I. Ventoso, Susana Guerra, E. Domingo, C. Rivas, M. Esteban (2006)
Impact of Protein Kinase PKR in Cell Biology: from Antiviral to Antiproliferative ActionMicrobiology and Molecular Biology Reviews, 70
T. Haystead, A. Sim, D. Carling, R. Honnor, Y. Tsukitani, P. Cohen, D. Hardie (1989)
Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolismNature, 337
W. Blalock, W. Blalock, P. Navolanic, Linda Steelman, J. Shelton, P. Moye, John Lee, R. Franklin, A. Mirza, M. McMahon, M. White, J. McCubrey (2003)
Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemiaLeukemia, 17
S. Basu, P. Panayiotidis, S. Hart, L. He, A. Man, A. Hoffbrand, K. Ganeshaguru (1997)
Role of double-stranded RNA-activated protein kinase in human hematological malignancies.Cancer research, 57 5
F. Falà, W. Blalock, P. Tazzari, A. Cappellini, F. Chiarini, G. Martinelli, A. Tafuri, J. McCubrey, L. Cocco, A. Martelli (2008)
Proapoptotic Activity and Chemosensitizing Effect of the Novel Akt Inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) in T-Cell Acute Lymphoblastic LeukemiaMolecular Pharmacology, 74
B. Williams (2001)
Signal Integration via PKRScience's STKE, 2001
N. Abraham, D. Stojdl, P. Duncan, N. Méthot, T. Ishii, M. Dubé, B. Vanderhyden, H. Atkins, D. Gray, M. McBurney, A. Koromilas, E. Brown, N. Sonenberg, J. Bell (1999)
Characterization of Transgenic Mice with Targeted Disruption of the Catalytic Domain of the Double-stranded RNA-dependent Protein Kinase, PKR*The Journal of Biological Chemistry, 274
Q. Su, Shuo Wang, D. Baltzis, Like Qu, Andrew Wong, A. Koromilas (2006)
Tyrosine phosphorylation acts as a molecular switch to full-scale activation of the eIF2alpha RNA-dependent protein kinase.Proceedings of the National Academy of Sciences of the United States of America, 103 1
X. Saelens, M. Kalai, P. Vandenabeele (2001)
Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation.The Journal of biological chemistry, 276 45
Recent reports demonstrate that PKR is constitutively active in a variety of tumors and is required for tumor maintenance and growth. Here we report acute leukemia cell lines contain elevated levels of p‐T451 PKR and PKR activity as compared to normal controls. Inhibition of PKR with a specific inhibitor, as well as overexpression of a dominant‐negative PKR, inhibited cell proliferation and induced cell death. Interestingly, PKR inhibition using the specific inhibitor resulted in a time‐dependent augmentation of AKT S473 and GSK‐3α S21 phosphorylation, which was confirmed in patient samples. Increased phosphorylation of AKT and GSK‐3α was not dependent on PI3K activity. PKR inhibition augmented levels of p‐S473 AKT and p‐S21/9 GSK‐3α/β in the presence of the PI3K inhibitor, LY294002, but was unable to augment GSK‐3α or β phosphorylation in the presence of the AKT inhibitor, A443654. Pre‐treatment with the PKR inhibitor blocked the ability of A443654 and LY294002 to promote phosphorylation of eIF2α, indicating the mechanism leading to AKT phosphorylation and activation did not require eIF2α phosphorylation. The effects of PKR inhibition on AKT and GSK‐3 phosphorylation were found to be, in part, PP2A‐dependent. These data indicate that, in acute leukemia cell lines, constitutive basal activity of PKR is required for leukemic cell homeostasis and growth and functions as a negative regulator of AKT, thereby increasing the pool of potentially active GSK‐3. J. Cell. Physiol. 221: 232–241, 2009. © 2009 Wiley‐Liss, Inc
Journal of Cellular Physiology – Wiley
Published: Oct 1, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.