Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Dioum, R. Chen, M. Alexander, Quiyang Zhang, Richard Hogg, R. Gerard, Joseph Garcia (2009)
Regulation of Hypoxia-Inducible Factor 2α Signaling by the Stress-Responsive Deacetylase Sirtuin 1Science, 324
J. Rodgers, P. Puigserver (2007)
Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1Proceedings of the National Academy of Sciences, 104
Hwei-Ling Cheng, R. Mostoslavsky, Shinichi Saito, J. Manis, Yansong Gu, Parin Patel, R. Bronson, E. Appella, F. Alt, Katrin Chua (2003)
Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient miceProceedings of the National Academy of Sciences of the United States of America, 100
Wen Chen, David Wang, R. Yen, Jianyuan Luo, W. Gu, S. Baylin (2005)
Tumor Suppressor HIC1 Directly Regulates SIRT1 to Modulate p53-Dependent DNA-Damage ResponsesCell, 123
J. Rodgers, C. Lerín, W. Haas, S. Gygi, B. Spiegelman, P. Puigserver (2005)
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1Nature, 434
Fan Lan, José Cacicedo, N. Ruderman, Y. Ido (2008)
SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1Journal of Biological Chemistry, 283
Y. Nie, D. Erion, Zhenglong Yuan, M. Dietrich, G. Shulman, T. Horvath, Q. Gao (2009)
STAT3 inhibition of gluconeogenesis is downregulated by SirT1Nature Cell Biology, 11
Shaday Michán, Y. Li, M. Chou, Edoardo Parrella, Huanying Ge, J. Long, Joanne Allard, Kaitlyn Lewis, Marshall Miller, Wei Xu, R. Mervis, J. Chen, K. Guerin, Lois Smith, M. McBurney, D. Sinclair, M. Baudry, R. Cabo, V. Longo (2010)
SIRT1 Is Essential for Normal Cognitive Function and Synaptic PlasticityThe Journal of Neuroscience, 30
M. Pacholec, J. Bleasdale, B. Chrunyk, D. Cunningham, Declan Flynn, R. Garofalo, D. Griffith, M. Griffor, P. Loulakis, Brandon Pabst, X. Qiu, B. Stockman, V. Thanabal, A. Varghese, J. Ward, J. Withka, Kay Ahn (2010)
SRT1720, SRT2183, SRT1460, and Resveratrol Are Not Direct Activators of SIRT1♦The Journal of Biological Chemistry, 285
Yasukazu Nakahata, S. Sahar, G. Astarita, M. Kaluzová, P. Sassone-Corsi (2009)
Circadian Control of the NAD+ Salvage Pathway by CLOCK-SIRT1Science, 324
Su-Ju Lin, P. Defossez, L. Guarente (2000)
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae.Science, 289 5487
K. Tanner, Joseph Landry, Rolf Sternglanz, J. Denu (2000)
Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.Proceedings of the National Academy of Sciences of the United States of America, 97 26
Beidong Liu, L. Larsson, Antonio Caballero, Xinxin Hao, David Öling, J. Grantham, T. Nyström (2010)
The Polarisome Is Required for Segregation and Retrograde Transport of Protein AggregatesCell, 140
Jinping Zhang, Sang‐Myeong Lee, S. Shannon, Beixue Gao, Weimin Chen, An Chen, R. Divekar, M. McBurney, H. Braley‐Mullen, H. Zaghouani, Deyu Fang (2009)
The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice.The Journal of clinical investigation, 119 10
F. Picard, Martin Kurtev, Namjin Chung, A. Topark-ngarm, T. Senawong, R. Oliveira, M. Leid, M. McBurney, L. Guarente (2004)
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γNature, 429
S. Hisahara, S. Chiba, H. Matsumoto, M. Tanno, H. Yagi, S. Shimohama, Makoto Sato, Y. Horio (2008)
Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocationProceedings of the National Academy of Sciences, 105
Ralph Alcendor, Shumin Gao, P. Zhai, Daniela Zablocki, E. Holle, Xianzhong Yu, Bin Tian, T. Wagner, S. Vatner, J. Sadoshima (2007)
Sirt1 Regulates Aging and Resistance to Oxidative Stress in the HeartCirculation Research, 100
C. Cantó, Z. Gerhart-Hines, J. Feige, Marie Lagouge, L. Noriega, J. Milne, P. Elliott, P. Puigserver, J. Auwerx (2009)
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activityNature, 458
N. Sundaresan, S. Samant, V. Pillai, Senthilkumar Rajamohan, Mahesh Gupta (2008)
SIRT3 Is a Stress-Responsive Deacetylase in Cardiomyocytes That Protects Cells from Stress-Mediated Cell Death by Deacetylation of Ku70Molecular and Cellular Biology, 28
K. Shinmura, K. Tamaki, R. Bolli (2008)
Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1.American journal of physiology. Heart and circulatory physiology, 295 6
Marie Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Gény, M. Laakso, P. Puigserver, J. Auwerx (2006)
Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1αCell, 127
B. Schwer, J. Bunkenborg, R. Verdin, J. Andersen, E. Verdin (2006)
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2Proceedings of the National Academy of Sciences, 103
A. Kaidi, B. Weinert, Chunaram Choudhary, S. Jackson (2010)
Human SIRT6 Promotes DNA End Resection Through CtIP DeacetylationScience, 329
Y. Tsukamoto, Jun‐ichi Kato, H. Ikeda (1997)
Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiaeNature, 388
E. Ford, R. Voit, Gregory Liszt, C. Magin, I. Grummt, L. Guarente (2006)
Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription.Genes & development, 20 9
E. Michishita, Jean Park, Jenna Burneskis, J. Barrett, I. Horikawa (2005)
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.Molecular biology of the cell, 16 10
Toshiya Sugino, Mitsuhisa Maruyama, M. Tanno, A. Kuno, K. Houkin, Y. Horio (2010)
Protein deacetylase SIRT1 in the cytoplasm promotes nerve growth factor‐induced neurite outgrowth in PC12 cellsFEBS Letters, 584
A. Purushotham, T. Schug, Qing Xu, S. Surapureddi, Xiumei Guo, Xiaoling Li (2009)
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation.Cell metabolism, 9 4
J. Baur, K. Pearson, Nathan Price, H. Jamieson, C. Lerin, Avash Kalra, V. Prabhu, Joanne Allard, G. López-Lluch, Kaitlyn Lewis, P. Pistell, Suresh Poosala, K. Becker, O. Boss, Dana Gwinn, Mingyi Wang, S. Ramaswamy, K. Fishbein, R. Spencer, E. Lakatta, D. Couteur, R. Shaw, P. Navas, P. Puigserver, D. Ingram, R. Cabo, D. Sinclair (2006)
Resveratrol improves health and survival of mice on a high-calorie dietNature, 444
A. Brunet, Lora Sweeney, J. Sturgill, Katrin Chua, P. Greer, Yingxi Lin, Hien Tran, S. Ross, R. Mostoslavsky, H. Cohen, Linda Hu, Hwei-Ling Cheng, Mark Jedrychowski, S. Gygi, D. Sinclair, F. Alt, M. Greenberg (2004)
Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 DeacetylaseScience, 303
O. Vakhrusheva, Christian Smolka, P. Gajawada, S. Kostin, T. Boettger, T. Kubin, T. Braun, E. Bober (2008)
Sirt7 Increases Stress Resistance of Cardiomyocytes and Prevents Apoptosis and Inflammatory Cardiomyopathy in MiceCirculation Research, 102
M. Dietrich, Catiele Antunes, G. Gan, Zhong-Wu Liu, E. Borók, Y. Nie, Allison Xu, D. Souza, Qian Gao, S. Diano, Xiao-Bing Gao, T. Horvath (2010)
Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic PlasticityThe Journal of Neuroscience, 30
David Frescas, L. Valenti, D. Accili (2005)
Nuclear Trapping of the Forkhead Transcription Factor FoxO1 via Sirt-dependent Deacetylation Promotes Expression of Glucogenetic Genes*Journal of Biological Chemistry, 280
Jinhua Li, Xinli Qu, S. Ricardo, J. Bertram, D. Nikolic-Paterson (2010)
Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3.The American journal of pathology, 177 3
Roy Frye (2000)
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins.Biochemical and biophysical research communications, 273 2
Shunsuke Kubota, T. Kurihara, Mari Ebinuma, M. Kubota, K. Yuki, M. Sasaki, K. Noda, Y. Ozawa, Y. Oike, S. Ishida, K. Tsubota (2010)
Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation.The American journal of pathology, 177 4
J. Sakamoto, T. Miura, K. Shimamoto, Y. Horio (2004)
Predominant expression of Sir2α, an NAD‐dependent histone deacetylase, in the embryonic mouse heart and brain 1FEBS Letters, 556
T. Schug, Qing Xu, Huimin Gao, A. Peres-da-Silva, D. Draper, M. Fessler, A. Purushotham, Xiaoling Li (2010)
Myeloid Deletion of SIRT1 Induces Inflammatory Signaling in Response to Environmental StressMolecular and Cellular Biology, 30
H. Daitoku, M. Hatta, Hitomi Matsuzaki, S. Aratani, T. Ohshima, M. Miyagishi, T. Nakajima, A. Fukamizu (2004)
Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity.Proceedings of the National Academy of Sciences of the United States of America, 101 27
Xiaoling Li, Songwen Zhang, G. Blander, J. Tse, M. Krieger, L. Guarente (2007)
SIRT1 deacetylates and positively regulates the nuclear receptor LXR.Molecular cell, 28 1
M. McBurney, Xiaofeng Yang, K. Jardine, M. Hixon, K. Boekelheide, J. Webb, P. Lansdorp, M. Lemieux (2003)
The Mammalian SIR2α Protein Has a Role in Embryogenesis and GametogenesisMolecular and Cellular Biology, 23
H. Ota, Eriko Tokunaga, Kyungho Chang, M. Hikasa, K. Iijima, M. Eto, Koichi Kozaki, M. Akishita, Yasuyoshi Ouchi, M. Kaneki (2006)
Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras–MAPK signaling in human cancer cellsOncogene, 25
Jintang Du, Hong Jiang, Hening Lin (2009)
Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.Biochemistry, 48 13
A. Horst, L. Tertoolen, Lydia Vries-Smits, Roy Frye, R. Medema, B. Burgering (2004)
FOXO4 Is Acetylated upon Peroxide Stress and Deacetylated by the Longevity Protein hSir2SIRT1*Journal of Biological Chemistry, 279
Dohoon Kim, M. Nguyen, Matthew Dobbin, A. Fischer, F. Sananbenesi, J. Rodgers, I. Delalle, J. Baur, Guangchao Sui, S. Armour, P. Puigserver, D. Sinclair, L. Tsai (2007)
SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosisThe EMBO Journal, 26
Masato Iwabu, T. Yamauchi, Miki Okada-Iwabu, Koji Sato, Tatsuro Nakagawa, M. Funata, Mamiko Yamaguchi, S. Namiki, R. Nakayama, M. Tabata, H. Ogata, N. Kubota, Iseki Takamoto, Y. Hayashi, Naoko Yamauchi, H. Waki, M. Fukayama, I. Nishino, K. Tokuyama, K. Ueki, Y. Oike, S. Ishii, K. Hirose, Takao Shimizu, K. Touhara, T. Kadowaki (2010)
Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1Nature, 464
X. Hou, Shanqin Xu, Karlene Maitland-Toolan, Kaori Sato, B. Jiang, Y. Ido, Fan Lan, K. Walsh, M. Wierzbicki, T. Verbeuren, R. Cohen, Mengwei Zang (2008)
SIRT1 Regulates Hepatocyte Lipid Metabolism through Activating AMP-activated Protein Kinase*Journal of Biological Chemistry, 283
Jianyuan Luo, A. Nikolaev, S. Imai, Delin Chen, F. Su, A. Shiloh, L. Guarente, W. Gu (2001)
Negative Control of p53 by Sir2α Promotes Cell Survival under StressCell, 107
eun-joo kim, Jeong-Hoon Kho, M. Kang, S. Um (2007)
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity.Molecular cell, 28 2
S. Renaud, M. Lorgeril (1992)
Wine, alcohol, platelets, and the French paradox for coronary heart diseaseThe Lancet, 339
S. Imai, Christopher Armstrong, M. Kaeberlein, L. Guarente (2000)
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylaseNature, 403
Amar Klar, S. Fogel, Kathy Macleod (1979)
MAR1-a Regulator of the HMa and HMalpha Loci in SACCHAROMYCES CEREVISIAE.Genetics, 93 1
R. Firestein, G. Blander, Shaday Michán, Philipp Oberdoerffer, S. Ogino, Jennifer Campbell, A. Bhimavarapu, S. Luikenhuis, R. Cabo, C. Fuchs, W. Hahn, L. Guarente, D. Sinclair (2008)
The SIRT1 Deacetylase Suppresses Intestinal Tumorigenesis and Colon Cancer GrowthPLoS ONE, 3
F. Yeung, Jamie Hoberg, Catherine Ramsey, Michael Keller, David Jones, Roy Frye, M. Mayo (2004)
Modulation of NF‐κB‐dependent transcription and cell survival by the SIRT1 deacetylaseThe EMBO Journal, 23
W. Qin, Tianle Yang, L. Ho, Zhong Zhao, Jun Wang, Linghong Chen, Wei Zhao, M. Thiyagarajan, D. MacGrogan, J. Rodgers, P. Puigserver, J. Sadoshima, Haiteng Deng, S. Pedrini, S. Gandy, A. Sauve, G. Pasinetti (2006)
Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction*Journal of Biological Chemistry, 281
Lei Zhong, Agustina D’Urso, D. Toiber, C. Sebastián, R. Henry, D. Vadysirisack, A. Guimaraes, Brett Marinelli, J. Wikstrom, T. Nir, C. Clish, B. Vaitheesvaran, O. Iliopoulos, I. Kurland, Y. Dor, R. Weissleder, O. Shirihai, L. Ellisen, J. Espinosa, R. Mostoslavsky (2010)
The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1αCell, 140
M. Tanno, A. Kuno, T. Yano, T. Miura, S. Hisahara, S. Ishikawa, K. Shimamoto, Y. Horio (2010)
Induction of Manganese Superoxide Dismutase by Nuclear Translocation and Activation of SIRT1 Promotes Cell Survival in Chronic Heart Failure*The Journal of Biological Chemistry, 285
Brian North, E. Verdin (2007)
Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during MitosisPLoS ONE, 2
Zhenggang Yang, B. Kahn, Hang Shi, B. Xue (2010)
Macrophage α1 AMP-activated Protein Kinase (α1AMPK) Antagonizes Fatty Acid-induced Inflammation through SIRT1*The Journal of Biological Chemistry, 285
Kathryn Moynihan, Andrew Grimm, Marie Plueger, E. Bernal-Mizrachi, Eric Ford, C. Cras-Méneur, M. Permutt, S. Imai (2005)
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice.Cell metabolism, 2 2
Zhigang Yuan, X. Zhang, N. Sengupta, William Lane, E. Seto (2007)
SIRT1 regulates the function of the Nijmegen breakage syndrome protein.Molecular cell, 27 1
M. Rodríguez-Colman, Gemma Reverter-Branchat, M. Sorolla, J. Tamarit, J. Ros, E. Cabiscol (2010)
The Forkhead Transcription Factor Hcm1 Promotes Mitochondrial Biogenesis and Stress Resistance in Yeast*The Journal of Biological Chemistry, 285
Sophie Martin, T. Laroche, N. Suka, M. Grunstein, S. Gasser (1999)
Relocalization of Telomeric Ku and SIR Proteins in Response to DNA Strand Breaks in YeastCell, 97
M. Kaeberlein, M. McVey, L. Guarente (1999)
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms.Genes & development, 13 19
I. Mattagajasingh, Cuk-Seong Kim, Asma Naqvi, T. Yamamori, T. Hoffman, Saet-Byel Jung, Jeremy Dericco, K. Kasuno, K. Irani (2007)
SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthaseProceedings of the National Academy of Sciences, 104
Koichi Hasegawa, K. Yoshikawa (2008)
Necdin Regulates p53 Acetylation via Sirtuin1 to Modulate DNA Damage Response in Cortical NeuronsThe Journal of Neuroscience, 28
G. Ramadori, Charlotte Lee, A. Bookout, Syann Lee, K. Williams, Jason Anderson, J. Elmquist, R. Coppari (2008)
Brain SIRT1: Anatomical Distribution and Regulation by Energy AvailabilityThe Journal of Neuroscience, 28
Ran Zhang, Houzao Chen, Jinjing Liu, Yu-yan Jia, Zhuo Zhang, Rui-feng Yang, Y. Zhang, Jing Xu, Yu-sheng Wei, De-Pei Liu, C. Liang (2009)
SIRT1 Suppresses Activator Protein-1 Transcriptional Activity and Cyclooxygenase-2 Expression in Macrophages*The Journal of Biological Chemistry, 285
S. Westerheide, J. Anckar, S. Stevens, L. Sistonen, R. Morimoto (2009)
Stress-Inducible Regulation of Heat Shock Factor 1 by the Deacetylase SIRT1Science, 323
R. Mostoslavsky, Katrin Chua, D. Lombard, Wendy Pang, Miriam Fischer, L. Gellon, Pingfang Liu, G. Mostoslavsky, S. Franco, Michael Murphy, Kevin Mills, Parin Patel, Joyce Hsu, Andrew Hong, E. Ford, Hwei-Ling Cheng, Caitlin Kennedy, Nomeli Nunez, R. Bronson, D. Frendewey, W. Auerbach, D. Valenzuela, M. Karow, M. Hottiger, S. Hursting, J. Barrett, L. Guarente, R. Mulligan, B. Demple, G. Yancopoulos, Frederick Alt (2006)
Genomic Instability and Aging-like Phenotype in the Absence of Mammalian SIRT6Cell, 124
H. Dai, Lauren Kustigian, David Carney, April Case, Thomas Considine, Basil Hubbard, R. Perni, T. Riera, B. Szczepankiewicz, G. Vlasuk, R. Stein (2010)
SIRT1 Activation by Small MoleculesThe Journal of Biological Chemistry, 285
M. Potente, L. Ghaeni, D. Baldessari, R. Mostoslavsky, L. Rossig, F. Dequiedt, J. Haendeler, M. Mione, E. Dejana, F. Alt, A. Zeiher, S. Dimmeler (2007)
SIRT1 controls endothelial angiogenic functions during vascular growth.Genes & development, 21 20
H. Cohen, Christine Miller, Kevin Bitterman, N. Wall, B. Hekking, B. Kessler, K. Howitz, M. Gorospe, R. Cabo, D. Sinclair (2004)
Calorie Restriction Promotes Mammalian Cell Survival by Inducing the SIRT1 DeacetylaseScience, 305
J. Sequeira, G. Boily, Stephanie Bazinet, S. Saliba, Xiaohong He, K. Jardine, Christopher Kennedy, W. Staines, C. Rousseaux, R. Mueller, M. McBurney (2008)
sirt1-null mice develop an autoimmune-like condition.Experimental cell research, 314 16
A. Vaquero, Michael Scher, H. Erdjument-Bromage, P. Tempst, L. Serrano, D. Reinberg (2007)
SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formationNature, 450
C. Mccay, M. Crowell, L. Maynard (1935)
The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935.Nutrition, 5 3
Wenhui Zhao, J. Kruse, Yi Tang, S. Jung, J. Qin, W. Gu (2008)
Negative regulation of the deacetylase SIRT1 by DBC1Nature, 451
T. Prozorovski, U. Schulze-Topphoff, R. Glumm, Jan Baumgart, Friederike Schröter, O. Ninnemann, E. Siegert, I. Bendix, O. Brüstle, R. Nitsch, F. Zipp, O. Aktas (2008)
Sirt1 contributes critically to the redox-dependent fate of neural progenitorsNature Cell Biology, 10
Lianping Xing, Ana Venegas, Amy Chen, Lisa Garrett-Beal, Brendan Boyce, Harold Varmus, P. Schwartzberg (2001)
Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival.Genes & development, 15 2
I. Çakır, M. Perelló, Omar Lansari, N. Messier, C. Vaslet, E. Nillni (2009)
Hypothalamic Sirt1 Regulates Food Intake in a Rodent Model SystemPLoS ONE, 4
Kevin Bitterman, Rozalyn Anderson, H. Cohen, Magda Latorre-Esteves, D. Sinclair (2002)
Inhibition of Silencing and Accelerated Aging by Nicotinamide, a Putative Negative Regulator of Yeast Sir2 and Human SIRT1*The Journal of Biological Chemistry, 277
M. Chau, Jiaping Gao, Qing Yang, Zhidan Wu, J. Gromada (2010)
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathwayProceedings of the National Academy of Sciences, 107
Saravanan Rajendrasozhan, Se-Ran Yang, V. Kinnula, I. Rahman (2008)
SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease.American journal of respiratory and critical care medicine, 177 8
Miriam Braunstein, A. Rose, S. Holmes, C. Allis, J. Broach (1993)
Transcriptional silencing in yeast is associated with reduced nucleosome acetylation.Genes & development, 7 4
O. Aparicio, Barbara Billington, D. Gottschling (1991)
Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiaeCell, 66
Yingtao Zhang, Mu Zhang, H. Dong, S. Yong, X. Li, N. Olashaw, P. Kruk, J. Cheng, Wenlong Bai, Jiandong Chen, S. Nicosia, X. Zhang (2009)
Deacetylation of cortactin by SIRT1 promotes cell migrationOncogene, 28
M. Fulco, Y. Cen, P. Zhao, E. Hoffman, M. McBurney, A. Sauve, V. Sartorelli (2008)
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt.Developmental cell, 14 5
Nakamaru (2010)
A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9J. Biol. Chem., 285
Jennifer Chen, Yungui Zhou, Sarah Mueller-Steiner, Lin-Feng Chen, H. Kwon, Saili Yi, L. Mucke, L. Gan (2005)
SIRT1 Protects against Microglia-dependent Amyloid-β Toxicity through Inhibiting NF-κB Signaling*Journal of Biological Chemistry, 280
J. St-Pierre, S. Drori, M. Uldry, Jessica Silvaggi, James Rhee, S. Jäger, C. Handschin, Kangni Zheng, Jiandie Lin, Wenli Yang, D. Simon, R. Bachoo, B. Spiegelman (2006)
Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional CoactivatorsCell, 127
W. Hallows, Susan Lee, J. Denu (2006)
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetasesProceedings of the National Academy of Sciences, 103
S. Nemoto, M. Fergusson, T. Finkel (2005)
SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1α*Journal of Biological Chemistry, 280
Amy Walker, Fajun Yang, K. Jiang, J. Ji, J. Watts, A. Purushotham, O. Boss, Michael Hirsch, S. Ribich, Jesse Smith, Kristine Israelian, C. Westphal, J. Rodgers, T. Shioda, S. Elson, P. Mulligan, Hani Najafi-Shoushtari, Joshua Black, J. Thakur, L. Kadyk, J. Whetstine, R. Mostoslavsky, P. Puigserver, Xiaoling Li, N. Dyson, A. Hart, A. Näär (2010)
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP.Genes & development, 24 13
J. Kemper, Zhen Xiao, Bhaskar Ponugoti, Ji Miao, S. Fang, Deepthi Kanamaluru, Stephanie Tsang, Shwu‐Yuan Wu, C. Chiang, T. Veenstra (2009)
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states.Cell metabolism, 10 5
V. Pillai, N. Sundaresan, Gene Kim, Madhu Gupta, Senthilkumar Rajamohan, Jyothish Pillai, S. Samant, P. Ravindra, Ayman Isbatan, Mahesh Gupta (2009)
Exogenous NAD Blocks Cardiac Hypertrophic Response via Activation of the SIRT3-LKB1-AMP-activated Kinase Pathway*The Journal of Biological Chemistry, 285
B. Ahn, Hyun-Seok Kim, Shiwei Song, In Lee, Jie Liu, Athanassios Vassilopoulos, C. Deng, T. Finkel (2008)
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasisProceedings of the National Academy of Sciences, 105
In Lee, Liu Cao, R. Mostoslavsky, D. Lombard, Jie Liu, Nicholas Bruns, M. Tsokos, F. Alt, T. Finkel (2008)
A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagyProceedings of the National Academy of Sciences, 105
T. Kelly, C. Lerin, W. Haas, S. Gygi, P. Puigserver (2009)
GCN5-mediated Transcriptional Control of the Metabolic Coactivator PGC-1β through Lysine Acetylation*The Journal of Biological Chemistry, 284
M. Haigis, R. Mostoslavsky, K. Haigis, Kamau Fahie, Danos Christodoulou, A. Murphy, D. Valenzuela, G. Yancopoulos, M. Karow, G. Blander, C. Wolberger, T. Prolla, R. Weindruch, F. Alt, L. Guarente (2006)
SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β CellsCell, 126
H. Tissenbaum, L. Guarente (2001)
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegansNature, 410
G. Donmez, Diana Wang, Dena Cohen, L. Guarente (2010)
RETRACTED: SIRT1 Suppresses β-Amyloid Production by Activating the α-Secretase Gene ADAM10Cell, 142
Ruwin Pandithage, R. Lilischkis, K. Harting, A. Wolf, B. Jedamzik, J. Lüscher-Firzlaff, J. Vervoorts, E. Lasonder, E. Kremmer, B. Knöll, B. Lüscher (2008)
The regulation of SIRT2 function by cyclin-dependent kinases affects cell motilityThe Journal of Cell Biology, 180
B. Rogina, S. Helfand (2004)
Sir2 mediates longevity in the fly through a pathway related to calorie restriction.Proceedings of the National Academy of Sciences of the United States of America, 101 45
Cheng Sun, Fang Zhang, Xinjian Ge, T. Yan, Xingmiao Chen, Xian-zhe Shi, Q. Zhai (2007)
SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B.Cell metabolism, 6 4
Ruihong Wang, Yin Zheng, Hyun-Seok Kim, Xiaoling Xu, Liu Cao, Tyler Luhasen, Mi‐Hye Lee, C. Xiao, Athanassios Vassilopoulos, WeiPing Chen, K. Gardner, Y. Man, M. Hung, T. Finkel, C. Deng (2008)
Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis.Molecular cell, 32 1
Y. Nakamaru, C. Vuppusetty, H. Wada, J. Milne, Misako Ito, C. Rossios, M. Elliot, J. Hogg, S. Kharitonov, H. Goto, Jean Bemis, P. Elliott, P. Barnes, Kazuhiro Ito (2009)
A protein deacetylase SIRT1 is a negative regulator of metalloproteinase‐9The FASEB Journal, 23
Jun Gao, Wenyuan Wang, Y. Mao, Johannes Gräff, J. Guan, L. Pan, Gloria Mak, Dohoon Kim, Susan Su, L. Tsai (2010)
A novel pathway regulates memory and plasticity via SIRT1 and miR-134Nature, 466
T. Nakagawa, David Lomb, M. Haigis, L. Guarente (2009)
SIRT5 Deacetylates Carbamoyl Phosphate Synthetase 1 and Regulates the Urea CycleCell, 137
K. Ramsey, J. Yoshino, Cynthia Brace, Dana Abrassart, Yumiko Kobayashi, B. Marcheva, Heekyung Hong, Jason Chong, Ethan Buhr, Choogon Lee, J. Takahashi, S. Imai, J. Bass (2009)
Circadian Clock Feedback Cycle Through NAMPT-Mediated NAD+ BiosynthesisScience, 324
H. Vaziri, S. Dessain, E. Eaton, S. Imai, Roy Frye, T. Pandita, L. Guarente, R. Weinberg (2001)
hSIR2SIRT1 Functions as an NAD-Dependent p53 DeacetylaseCell, 107
D. Sinclair, L. Guarente (1997)
Extrachromosomal rDNA Circles— A Cause of Aging in YeastCell, 91
Ji‐Hong Lim, Yoon-Mi Lee, Y. Chun, Junjie Chen, Ja-Eun Kim, Jong-Wan Park (2010)
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha.Molecular cell, 38 6
H. Su, L. Hung, Jan-Kan Chen (2006)
Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats.American journal of physiology. Endocrinology and metabolism, 290 6
Yosuke Kobayashi, Yoko Furukawa-Hibi, Cheng Chen, Y. Horio, K. Isobe, K. Ikeda, N. Motoyama (2005)
SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress.International journal of molecular medicine, 16 2
M. Fulco, R. Schiltz, S. Iezzi, M. King, P. Zhao, Y. Kashiwaya, E. Hoffman, R. Veech, V. Sartorelli (2003)
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state.Molecular cell, 12 1
Kevin Pearson, Joseph Baur, Kaitlyn Lewis, Leonid Peshkin, Nathan Price, N. Labinskyy, W. Swindell, Davida Kamara, R. Minor, Evelyn Perez, H. Jamieson, Yongqing Zhang, Stephen Dunn, Kumar Sharma, Nancy Pleshko, L. Woollett, A. Csiszar, Yuji Ikeno, David Couteur, Peter Elliott, Kevin Becker, Placido Navas, Donald Ingram, Norman Wolf, Z. Ungvari, David Sinclair, R. Cabo (2008)
Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span.Cell metabolism, 8 2
J. Ford, M. Jiang, J. Milner (2005)
Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival.Cancer research, 65 22
K. Howitz, Kevin Bitterman, H. Cohen, Dudley Lamming, Siva Lavu, Jason Wood, R. Zipkin, Phuong Chung, A. Kisielewski, Li-li Zhang, Brandy Scherer, D. Sinclair (2003)
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespanNature, 425
Lei Tong, J. Denu (2010)
Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose.Biochimica et biophysica acta, 1804 8
A. Murayama, K. Ohmori, A. Fujimura, H. Minami, Kayoko Yasuzawa-Tanaka, Takao Kuroda, Shohei Oie, H. Daitoku, Mitsuru Okuwaki, K. Nagata, A. Fukamizu, K. Kimura, Toshiyuki Shimizu, J. Yanagisawa (2008)
Epigenetic Control of rDNA Loci in Response to Intracellular Energy StatusCell, 133
Z. Gerhart-Hines, J. Rodgers, Olivia Baré, C. Lerin, Seung-hee Kim, R. Mostoslavsky, F. Alt, Zhidan Wu, P. Puigserver (2007)
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC‐1αThe EMBO Journal, 26
Tiara Kawahara, E. Michishita, A. Adler, M. Damian, Elisabeth Berber, Meihong Lin, R. McCord, K. Ongaigui, Lisa Boxer, Howard Chang, Katrin Chua (2009)
SIRT6 Links Histone H3 Lysine 9 Deacetylation to NF-κB-Dependent Gene Expression and Organismal Life SpanCell, 136
S. Kume, M. Haneda, K. Kanasaki, T. Sugimoto, S. Araki, K. Isshiki, M. Isono, T. Uzu, L. Guarente, A. Kashiwagi, D. Koya (2007)
SIRT1 Inhibits Transforming Growth Factor β-Induced Apoptosis in Glomerular Mesangial Cells via Smad7 Deacetylation*Journal of Biological Chemistry, 282
M. Hirschey, Tadahiro Shimazu, E. Goetzman, Enxuan Jing, B. Schwer, D. Lombard, Carrie Grueter, C. Harris, S. Biddinger, O. Ilkayeva, R. Stevens, Yu Li, A. Saha, N. Ruderman, J. Bain, C. Newgard, Robert Farese, F. Alt, C. Kahn, E. Verdin (2009)
SIRT3 regulates fatty acid oxidation via reversible enzyme deacetylationNature, 464
Takeshi Yoshizaki, S. Schenk, T. Imamura, Jennie Babendure, N. Sonoda, E. Bae, D. Oh, Min Lu, J. Milne, C. Westphal, G. Bandyopadhyay, J. Olefsky (2010)
SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity.American journal of physiology. Endocrinology and metabolism, 298 3
M. Jang, Lining Cai, G. Udeani, Karla Slowing, Cathy Thomas, C. Beecher, H. Fong, N. Farnsworth, A. Kinghorn, R. Mehta, R. Moon, J. Pezzuto (1997)
Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from GrapesScience, 275
Huseyin Cimen, Min‐Joon Han, Yongjie Yang, Q. Tong, H. Koc, E. Koc (2010)
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria.Biochemistry, 49 2
Javier Revollo, Andrew Grimm, S. Imai (2004)
The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells*Journal of Biological Chemistry, 279
M. Fortini (2009)
Notch signaling: the core pathway and its posttranslational regulation.Developmental cell, 16 5
M. Tanno, J. Sakamoto, T. Miura, K. Shimamoto, Y. Horio (2007)
Nucleocytoplasmic Shuttling of the NAD+-dependent Histone Deacetylase SIRT1*Journal of Biological Chemistry, 282
Jeffrey Smith, J. Boeke (1997)
An unusual form of transcriptional silencing in yeast ribosomal DNA.Genes & development, 11 2
Senthilkumar Rajamohan, V. Pillai, Madhu Gupta, N. Sundaresan, K. Birukov, S. Samant, M. Hottiger, Mahesh Gupta (2009)
SIRT1 Promotes Cell Survival under Stress by Deacetylation-Dependent Deactivation of Poly(ADP-Ribose) Polymerase 1Molecular and Cellular Biology, 29
Kai Li, A. Casta, Rui Wang, Enerlyn Lozada, W. Fan, S. Kane, Q. Ge, W. Gu, D. Orren, Jianyuan Luo (2008)
Regulation of WRN Protein Cellular Localization and Enzymatic Activities by SIRT1-mediated Deacetylation*Journal of Biological Chemistry, 283
E. Michishita, R. McCord, Elisabeth Berber, M. Kioi, H. Padilla-Nash, M. Damian, Peggie Cheung, Rika Kusumoto, Tiara Kawahara, J. Barrett, Howard Chang, V. Bohr, T. Ried, O. Gozani, Katrin Chua (2008)
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatinNature, 452
Sirtuins are NAD + -dependent protein deacetylases that are broadly conserved from bacteria to humans. Because sirtuins extend the lifespan of yeast, worms and flies, much attention has been paid to their mammalian homologues. Recent studies have revealed diverse physiological functions of sirtuins that are essentially similar to those of their yeast homologue, Sir2 (silent information regulator 2). Sirtuins are implicated in the pathology of many diseases, for which sirtuin activators such as resveratrol have great promise as potential treatments. In the present review, we describe the functions of sirtuins in cell survival, inflammation, energy metabolism, cancer and differentiation, and their impact on diseases. We also discuss the organ-specific functions of sirtuins, focusing on the brain and blood vessels.
Clinical Science – Portland Press
Published: Sep 1, 2011
Keywords: deacetylation, DNA repair, inflammation, metabolism, mitochondrion, sirtuin, stress resistance
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.