Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Long, Amy Marshall-Colón, Xinguang Zhu (2015)
Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield PotentialCell, 161
Wenjuan Li, Limin Wang, Yanni Qi, Yaping Xie, Wei Zhao, Zhao Dang, Jianping Zhang (2022)
Overexpression of WRINKLED1 improves the weight and oil content in seeds of flax (Linum usitatissimum L.)Frontiers in Plant Science, 13
Pan Yuan, Guilong Zhou, Mingzhu Yu, John Hammond, Haijiang Liu, Dengfeng Hong, H. Cai, G. Ding, Sheliang Wang, Fangsen Xu, Chuang Wang, Lei Shi (2024)
Trehalose-6-phosphate synthase 8 increases photosynthesis and seed yield in Brassica napus.The Plant journal : for cell and molecular biology
Fangfang Wang, S. Perry (2013)
Identification of Direct Targets of FUSCA3, a Key Regulator of Arabidopsis Seed Development1[C][W][OA]Plant Physiology, 161
Yinshuai Tian, Xueyan Lv, G. Xie, Jing Zhang, Ying Xu, Fang Chen (2018)
Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis.Biochemical and biophysical research communications, 500 2
Jing Liu, Wei Hua, Hongli Yang, Tingting Guo, Xingchao Sun, Xinfa Wang, Guihua Liu, Hanzhong Wang (2014)
Effects of specific organs on seed oil accumulation in Brassica napus L.Plant science : an international journal of experimental plant biology, 227
Vidya Iyer, G. Sriram, D. Fulton, Ruilian Zhou, M. Westgate, Jacqueline Shanks (2008)
Metabolic flux maps comparing the effect of temperature on protein and oil biosynthesis in developing soybean cotyledons.Plant, cell & environment, 31 4
(2018)
Trehalose 6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1Plant Cell, 30
(2017)
Production of seed-like storage lipids and increase in oil bodies in corn (maize) vegetative biomass
Xinfa Wang, Guihua Liu, Qing Yang, Wei Hua, Jing Liu, Hanzhong Wang (2010)
Genetic analysis on oil content in rapeseed (Brassica napus L.)Euphytica, 173
Huang Jixiang, Fei Chen, Haozhong Zhang, Xiyuan Ni, Yilong Wang, Han Liu, Xiang-Ming Yao, Haiming Xu, Hao Wang, J. Meng, Zhao Jianyi (2017)
Dissection of additive, epistatic and QTL × environment effects involved in oil content variations in rapeseedPlant Breeding, 136
稲永 忍, 玖村 敦彦, 村田 吉男 (1979)
Studies on Matter Production of Rape Plant (Brassica napus L.) : II. Photosynthesis and matter production of pods, 48
(2018)
Genome-wide identification, expression profiling, and functional validation of oleosin gene family in Carthamus tinctor-ius L
J. Schwender, F. Goffman, J. Ohlrogge, Y. Shachar-Hill (2004)
Rubisco without the Calvin cycle improves the carbon efficiency of developing green seedsNature, 432
F. Goffman, A. Alonso, J. Schwender, Y. Shachar-Hill, J. Ohlrogge (2005)
Light Enables a Very High Efficiency of Carbon Storage in Developing Embryos of Rapeseed1Plant Physiology, 138
(2023)
Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovulesNat Commun., 14
Michal Pyc, Yingqi Cai, S. Gidda, O. Yurchenko, Sunjung Park, Franziska Kretzschmar, T. Ischebeck, O. Valerius, G. Braus, K. Chapman, J. Dyer, R. Mullen (2017)
Arabidopsis lipid droplet‐associated protein (LDAP) – interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seedsThe Plant Journal, 92
Liangqian Yu, Dongxu Liu, Feifan Yin, Pugang Yu, Shaoping Lu, Yuting Zhang, Hu Zhao, Chaofu Lu, Xuan Yao, Cheng Dai, Qing-Yong Yang, Liang Guo (2023)
Interaction between phenylpropane metabolism and oil accumulation in the developing seed of Brassica napus revealed by high temporal-resolution transcriptomesBMC Biology, 21
J. Schwender, Inga Hebbelmann, N. Heinzel, Tatjana Hildebrandt, A. Rogers, D. Naik, Matthias Klapperstück, H. Braun, F. Schreiber, P. Denolf, Ljudmilla Borisjuk, H. Rolletschek (2015)
Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape during in Vitro Culture1[OPEN]Plant Physiology, 168
B. Bai, Le Wang, May Lee, Yingjun Zhang, Rahmadsyah, Yuzer Alfiko, Baoqing Ye, Z. Wan, C. Lim, Antonius Suwanto, N. Chua, G. Yue (2017)
Genome-wide identification of markers for selecting higher oil content in oil palmBMC Plant Biology, 17
Nannan Li, Hongjun Meng, Shengting Li, Zhen Zhang, Xin Zhao, Shufeng Wang, Aihui Liu, Qing Li, Qin Song, Xiaohong Li, Liang Guo, Hanwen Li, Jian-jiao Zuo, Keming Luo (2020)
Two Plastid Fatty Acid Exporters Contribute to Seed Oil Accumulation in Arabidopsis1Plant Physiology, 182
Gabriel Deslandes-Hérold, M. Zanella, Erik Solhaug, Michaela Fischer-Stettler, Mayank Sharma, Léo Buergy, C. Herrfurth, Maite Colinas, I. Feussner, Melanie Abt, S. Zeeman (2022)
The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recyclingThe Plant Cell, 35
(2022)
Characterization and functional analysis of the MADS-box EgAGL9 transcription factor from the mesocarp of oil palm (Elaeis guineensis JacqPlant Sci., 321
D. Paolo, Lisa Rotasperti, A. Schnittger, S. Masiero, L. Colombo, C. Mizzotti (2021)
The Arabidopsis MADS-Domain Transcription Factor SEEDSTICK Controls Seed Size via Direct Activation of E2FaPlants, 10
Sami Kazaz, Guillaume Barthole, F. Domergue, Hasna Ettaki, A. To, Damien Vasselon, D. Vos, Katia Belcram, L. Lepiniec, S. Baud (2020)
Differential Activation of Partially Redundant Δ9 Stearoyl-ACP Desaturase Genes Is Critical for Omega-9 Monounsaturated Fatty Acid Biosynthesis During Seed Development in ArabidopsisPlant Cell, 32
Jianjiang Ma, J. Liu, Wen-feng Pei, Qifeng Ma, Nuohan Wang, Xia Zhang, Yupeng Cui, Dan Li, Guoyuan Liu, Man Wu, Xinshan Zang, Jikun Song, Jinfa Zhang, Shuxun Yu, Jiwen Yu (2019)
Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1.Plant science : an international journal of experimental plant biology, 286
Wenying Liao, Runze Guo, Kun Qian, Wanxuan Shi, James Whelan, H. Shou (2024)
The acyl-acyl carrier protein thioesterases GmFATA1 and GmFATA2 are essential for fatty acid accumulation and growth in soybean.The Plant journal : for cell and molecular biology
D. Henning (1972)
MetabolismAnesthesiology, 37
Thiya Mukherjee, Shrikaar Kambhampati, Stewart Morley, T. Durrett, Doug Allen (2024)
Metabolic flux analysis to increase oil in seedsPlant Physiology, 197
Jun Liu, Wanjun Hao, Jing Liu, Shihang Fan, Wei Zhao, Linbin Deng, Xinfa Wang, Zhi-yong Hu, Wei Hua, Hanzhong Wang (2019)
A Novel Chimeric Mitochondrial Gene Confers Cytoplasmic Effects on Seed Oil Content in Polyploid Rapeseed (Brassica napus).Molecular plant, 12 4
Yang Xu, Fan Yan, Yu Zong, Jingwen Li, Han Gao, Yajing Liu, Ying Wang, Youcheng Zhu, Qingyu Wang (2022)
Proteomic and lipidomics analyses of high fatty acid AhDGAT3 transgenic soybean reveals the key lipase gene associated with the lipid internal mechanism.Genome
K. Demski, S. Jeppson, S. Stymne, I. Lager (2022)
Phosphatidylcholine:diacylglycerol cholinephosphotransferase’s unique regulation of castor bean oil qualityPlant Physiology, 189
R. Martins-Noguerol, A. Moreno-Pérez, Sébastien Acket, S. Makni, R. Garcés, Adrián Troncoso-Ponce, J. Salas, B. Thomasset, Enrique Martínez-Force (2019)
Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thalianaMetabolites, 9
Philip Bates, Jay Shockey (2024)
Towards rational control of seed oil composition: dissecting cellular organization and flux control of lipid metabolismPlant Physiology, 197
Kai Zhang, Liluo Nie, Qiqi Cheng, Yongtai Yin, Kang Chen, Fuyu Qi, Dashan Zou, Haohao Liu, Weiguo Zhao, Baoshan Wang, Maoteng Li (2019)
Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 systemBiotechnology for Biofuels, 12
Nan Wang, Baolong Tao, Jiaming Mai, Yanli Guo, Rihui Li, Rundong Chen, Lun Zhao, Jing Wen, B. Yi, J. Tu, T. Fu, Jitao Zou, Jinxiong Shen (2022)
Kinase CIPK9 integrates glucose and abscisic acid signaling to regulate seed oil metabolism in rapeseed.Plant physiology
稲永 忍, 玖村 敦彦 (1974)
Studies on Matter Production of Rape Plant (Brassica napus L.) : I. Changes with growth in rates of photosynthesis and respiration of rape plant population, 43
D. Lunn, J. Wallis, J. Browse (2018)
Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating SeedsPlant and Cell Physiology, 59
Yuanyuan Zhang, Zhiquan Yang, Yizhou He, Dongxu Liu, Yueying Liu, Congyuan Liang, Meili Xie, Yupeng Jia, Qinglin Ke, Yongming Zhou, Xiaohui Cheng, Jun-yan Huang, Lijiang Liu, Yang Xiang, H. Raman, D. Kliebenstein, Shengyi Liu, Qing-Yong Yang (2024)
Structural variation reshapes population gene expression and trait variation in 2,105 Brassica napus accessionsNature Genetics, 56
S. Rood, D. Major, W. Charnetski (1984)
Seasonal changes in 14CO2 assimilation and 14C translocation in oilseed rapeField Crops Research, 8
Hélène Vigeolas, P. Waldeck, T. Zank, P. Geigenberger (2007)
Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter.Plant biotechnology journal, 5 3
Qing Li, Jianhua Shao, Shaohua Tang, Qingwen Shen, Tiehu Wang, Wenling Chen, Yueyun Hong (2015)
Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napusFrontiers in Plant Science, 6
Hongbo Chao, Liangxing Guo, Weiguo Zhao, Huaixin Li, Maoteng Li (2022)
A major yellow-seed QTL on chromosome A09 significantly increases the oil content and reduces the fiber content of seed in Brassica napusTheoretical and Applied Genetics, 135
Hongyan Yang, Wubing Wang, Qingyuan He, Shihua Xiang, D. Tian, T. Zhao, J. Gai (2019)
Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybeanTheoretical and Applied Genetics, 132
S. Jeennor, Hugo Volkaert (2013)
Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.)Tree Genetics & Genomes, 10
N. Billotte, bullet Jourjon, bullet Marseillac, bullet Berger, bullet Flori, bullet Asmady, bullet Adon, bullet Singh, bullet Nouy, bullet Potier, bullet Cheah, bullet Rohde, bullet Ritter, bullet Courtois, bullet Charrier, bullet Mangin (2010)
QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.)TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 120
Enkhtuul Tsogtbaatar, Jean-Christophe Cocuron, A. Alonso (2020)
Non-conventional pathways enable pennycress (Thlaspi arvense L.) embryos to achieve high efficiency of oil biosynthesisJournal of Experimental Botany, 71
A. Alonso, F. Goffman, J. Ohlrogge, Y. Shachar-Hill (2007)
Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos.The Plant journal : for cell and molecular biology, 52 2
Yang Xu, Fan Yan, Yajing Liu, Ying Wang, Han Gao, Shihui Zhao, Youcheng Zhu, Qingyu Wang, Jingwen Li (2021)
Quantitative proteomic and lipidomics analyses of high oil content GmDGAT1-2 transgenic soybean illustrate the regulatory mechanism of lipoxygenase and oleosinPlant Cell Reports, 40
Hongbo Chao, Hao Wang, Xiaodong Wang, Liangxing Guo, Jianwei Gu, Weiguo Zhao, Baojun Li, Dengyan Chen, N. Raboanatahiry, Maoteng Li (2017)
Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napusScientific Reports, 7
Stewart Morley, Fangfang Ma, M. Alazem, C. Frankfater, Hochul Yi, Tessa Burch-Smith, T. Clemente, Veena Veena, Hanh Nguyen, Doug Allen (2023)
Expression of malic enzyme reveals subcellular carbon partitioning for storage reserve production in soybeans.The New phytologist
(2017)
Genome-wide identification of markers for selecting higher oil content in oil palmBMC Plant Biol., 17
Wei Hua, Rong-Jun Li, Gaomiao Zhan, Jing Liu, Jun Li, Xinfa Wang, Guihua Liu, Hanzhong Wang (2012)
Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis.The Plant journal : for cell and molecular biology, 69 3
(2023)
Characterization of oil body and starch granule dynamics in developing seeds of Brassica napusInt J Mol Sci, 24
Zhiyang Zhai, Hui Liu, J. Shanklin (2017)
Phosphorylation of WRINKLED1 by KIN10 Results in Its Proteasomal Degradation, Providing a Link between Energy Homeostasis and Lipid Biosynthesis[OPEN]Plant Cell, 29
Y. Li-Beisson, B. Shorrosh, F. Beisson, M. Andersson, V. Arondel, Philip Bates, S. Baud, D. Bird, Allan Debono, T. Durrett, R. Franke, I. Graham, K. Katayama, A. Kelly, T. Larson, J. Markham, M. Miquel, I. Molina, I. Nishida, Owen Rowland, L. Samuels, K. Schmid, H. Wada, R. Welti, Changcheng Xu, Rémi Zallot, J. Ohlrogge (2013)
Acyl-Lipid Metabolism, 2013
Shengyi Liu, H. Raman, Yang Xiang, Chuanji Zhao, Jun-yan Huang, Yuanyuan Zhang (2022)
De novo design of future rapeseed crops: Challenges and opportunitiesThe Crop Journal
K. Jofuku, Pamela Omidyar, Zorana Gee, J. Okamuro (2005)
Control of seed mass and seed yield by the floral homeotic gene APETALA2.Proceedings of the National Academy of Sciences of the United States of America, 102 8
N. Behnke, Edy Suprianto, C. Möllers (2018)
A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.)Theoretical and Applied Genetics, 131
Guanbo Yan, Pugang Yu, Xiangrui Tian, Liang Guo, J. Tu, Jinxiong Shen, B. Yi, T. Fu, Jing Wen, Kede Liu, Chaozhi Ma, C. Dai (2021)
DELLA proteins BnaA6.RGA and BnaC7.RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in Brassica napusPlant Biotechnology Journal, 19
D. Major, W. Charnetski (1976)
Distribution of 14C‐labeled Assimilates in Rape Plants 1Crop Science, 16
Jingqiu Lan, Ning Wang, Yutao Wang, Yidan Jiang, Hao Yu, Xiaofeng Cao, Genji Qin (2023)
Arabidopsis TCP4 transcription factor inhibits high temperature-induced homeotic conversion of ovulesNature Communications, 14
Annual reports of new rapeseed varieties (annual series)
Yingqi Cai, J. Goodman, Michal Pyc, R. Mullen, J. Dyer, K. Chapman (2015)
Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation[OPEN]Plant Cell, 27
Characterization and functional analysis of the MADS-box EgAGL9 transcription factor
Wenliang Wei, Yanxin Zhang, Hai-xia Lü, Donghua Li, Linhai Wang, Xiurong Zhang (2013)
Association analysis for quality traits in a diverse panel of Chinese sesame (Sesamum indicum L.) germplasm.Journal of integrative plant biology, 55 8
Yu Liang, Kai Kang, L. Gan, Shaobo Ning, J. Xiong, Shaowen Song, L.-Q. Xi, Senying Lai, Yongtai Yin, Jianwei Gu, Junbei Xiang, Shisheng Li, Baoshan Wang, Maoteng Li (2019)
Drought‐responsive genes, late embryogenesis abundant group3 ( LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROSPlant Biotechnology Journal, 17
Jiwen Yu, Shuxun Yu, S. Fan, M. Song, Honghong Zhai, Xingli Li, Jinfa Zhang (2012)
Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line populationEuphytica, 187
(1992)
Studies on the sources of the dry matter in the seed of rapeseed
(2021)
Quantitative trait locus analysis for sesame oil and fatty acid contents
Audrey Lim, Que Kong, Aqilah Noor, Yu Song, Sitakanta Pattanaik, Ling Yuan, Wei Ma (2023)
B-BOX-DOMAIN PROTEIN32 modulates seed oil biosynthesis in Arabidopsis by interacting with WRINKLED1.Plant physiology
T. Ke, Jingyin Yu, C. Dong, Han Mao, Wei Hua, Shengyi Liu (2015)
ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolismBMC Plant Biology, 15
Zhi-yong Hu, Wei Hua, Liang Zhang, Linbin Deng, Xinfa Wang, Guihua Liu, Wanjun Hao, Hanzhong Wang (2013)
Seed Structure Characteristics to Form Ultrahigh Oil Content in RapeseedPLoS ONE, 8
Tianhe Cheng, Peng Zhao, Yanru Ren, J. Zou, Meng-xiang Sun (2020)
AtMIF1 increases seed oil content by attenuating GL2 inhibition.The New phytologist
(2020)
Oil-producing metabolons containing DGAT1 use separate substrate pools from those containing DGAT2 or PDATPlant Physiol, 184
(2013)
Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line populationTheor Appl Genet, 126
W. Yeap, Fong-Chin Lee, Dilip Shan, H. Musa, D. Appleton, H. Kulaveerasingam (2017)
WRI1‐1, ABI5, NF‐YA3 and NF‐YC2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palmThe Plant Journal, 91
Yanjie Yao, Erhui Xiong, Xuelian Qu, Junfeng Li, Hongli Liu, Leipo Quan, Wenyan Lu, Xuling Zhu, Meiling Chen, Ke Li, Xiaoming Chen, Yun Lian, Weiguo Lu, Dan Zhang, Xinan Zhou, Shanshan Chu, Yongqing Jiao (2023)
WGCNA and transcriptome profiling reveal hub genes for key development stage seed size/oil content between wild and cultivated soybeanBMC Genomics, 24
Ruihuan Huang, Mengling Liu, Guanping Gong, Pingzhi Wu, M. Bai, Hongting Qin, Guohe Wang, Huimei Liao, Xiaoxiu Wang, Yanqun Li, Hong Wu, Xiaojing Wang, Chengwei Yang, D. Schubert, Shengchun Zhang (2022)
BLISTER promotes seed maturation and fatty acid biosynthesis by interacting with WRINKLED1 to regulate chromatin dynamics in Arabidopsis.The Plant cell
Jianbin Guo, Nian Liu, Weitao Li, Bei Wu, Haiwen Chen, Li Huang, Weigang Chen, Huaiyong Luo, Xiaojing Zhou, Huifang Jiang (2021)
Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.)Euphytica, 217
T. Vanhercke, Uday Divi, A. Tahchy, Qing Liu, Madeline Mitchell, M. Taylor, P. Eastmond, Fiona Bryant, A. Mechanicos, C. Blundell, Yao Zhi, S. Belide, P. Shrestha, Xue-Rong Zhou, J. Ral, R. White, A. Green, S. Singh, J. Petrie (2017)
Step changes in leaf oil accumulation via iterative metabolic engineering.Metabolic engineering, 39
Sha Tang, Hu Zhao, Shaoping Lu, Liangqian Yu, Guofang Zhang, Yuting Zhang, Qingyong Yang, Yongming Zhou, Xuemin Wang, Wei Ma, Weibo Xie, Liang Guo (2020)
Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus.Molecular plant
(2020)
containing DGAT2 or PDAT
Yongtai Yin, Jianqiang Jia, Hongsheng He, Weiguo Zhao, Zhenyi Guo, Kang Chen, Huaixin Li, Jianjie He, Yiran Ding, Wang Chen, Jingrong Li, Yujiao Li, Haikun Zhang, Zilong Li, N. Raboanatahiry, Chunhua Fu, Libin Zhang, Longjiang Yu, Maoteng Li (2024)
BnSTINet: An experimentally‐based transcription factor interaction network in seeds of Brassica napusPlant Biotechnology Journal, 22
Mingxun Chen, Lijie Xuan, Longhua Zhou, Zhilan Li, Xue-zhu Du, Essa Ali, Guoping Zhang, Li-xi Jiang (2014)
TRANSPARENT TESTA 8 inhibits seed fatty acid accumulation by 1 targeting several seed development regulators in Arabidopsis
Rajinder Singh, Eng-Ti Low, L. Ooi, M. Ong-Abdullah, Ting Chin, J. Nagappan, R. Nookiah, M. Amiruddin, Rozana Rosli, Mohamad Manaf, K. Chan, M. Halim, Norazah Azizi, N. Lakey, Steven Smith, M. Budiman, Michael Hogan, Blaire Bacher, Andrew Brunt, Chunyan Wang, Jared Ordway, R. Sambanthamurthi, R. Martienssen (2013)
The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICKNature, 500
S. Baud, L. Lepiniec (2010)
Physiological and developmental regulation of seed oil production.Progress in lipid research, 49 3
Yingqi Cai, Elizabeth McClinchie, Ann Price, T. Nguyen, S. Gidda, Samantha Watt, O. Yurchenko, Sunjung Park, D. Sturtevant, R. Mullen, J. Dyer, K. Chapman (2017)
Mouse fat storage‐inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plantsPlant Biotechnology Journal, 15
Nikolai Adamski, E. Anastasiou, S. Eriksson, C. O'Neill, Michael Lenhard (2009)
Local maternal control of seed size by KLUH/CYP78A5-dependent growth signalingProceedings of the National Academy of Sciences, 106
Dong Li, Yuan Guo, Da Zhang, Shuangcheng He, Jing-zhi Gong, Haoli Ma, Xin Gao, Zhonghua Wang, Li-xi Jiang, Xiaoling Dun, Shengwu Hu, Mingxun Chen (2020)
Melatonin Represses Oil and Anthocyanin Accumulation in Seeds1[OPEN]Plant Physiology, 183
Yungu Zhai, Kaidi Yu, Shengli Cai, Limin Hu, Olalekan Amoo, Lei Xu, Yang Yang, Boyuan Ma, Yangmiao Jiao, Chaofeng Zhang, M. Khan, S. Khan, C. Fan, Yongming Zhou (2019)
Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L.Plant Biotechnology Journal, 18
J. Kirkegaard, J. Lilley, R. Brill, A. Ware, C. Walela (2018)
The critical period for yield and quality determination in canola (Brassica napus L.)Field Crops Research
K. Maeo, Tsuyoshi Tokuda, A. Ayame, Naoko Mitsui, T. Kawai, Hironaka Tsukagoshi, S. Ishiguro, K. Nakamura (2009)
An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis.The Plant journal : for cell and molecular biology, 60 3
(2020)
Teosinte branched 1/cycloidea/proliferating cell factor4 interacts with WRINKLED1 to mediate seed oil biosynthesis
Chun Li, H. Miao, Li-bin Wei, Tide Zhang, Xiuhua Han, Haiyang Zhang (2014)
Association Mapping of Seed Oil and Protein Content in Sesamum indicum L. Using SSR MarkersPLoS ONE, 9
Joachim Lonien, J. Schwender (2009)
Analysis of Metabolic Flux Phenotypes for Two Arabidopsis Mutants with Severe Impairment in Seed Storage Lipid Synthesis1[W][OA]Plant Physiology, 151
S. Ruuska, T. Girke, C. Benning, J. Ohlrogge (2002)
Contrapuntal Networks of Gene Expression during Arabidopsis Seed Filling Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.000877.The Plant Cell Online, 14
Shuangcheng He, Yuanchang Min, Zijin Liu, Fang Zhi, Rong Ma, Ankang Ge, Shixiang Wang, Yu Zhao, Danshuai Peng, Da Zhang, Minshan Jin, Bo Song, Jianjun Wang, Yuan Guo, Mingxun Chen (2023)
Antagonistic MADS-box transcription factors SEEDSTICK and SEPALLATA3 form a transcriptional regulatory network that regulates seed oil accumulation.Journal of integrative plant biology
Hui Liu, Zhiyang Zhai, Kate Kuczynski, J. Keereetaweep, J. Schwender, J. Shanklin (2019)
WRINKLED1 Regulates BIOTIN ATTACHMENT DOMAIN-CONTAINING Proteins that Inhibit Fatty Acid Synthesis1[OPEN]Plant Physiology, 181
E. Allen, D. Morgan, W. Ridgman (1971)
A physiological analysis of the growth of oilseed rapeThe Journal of Agricultural Science, 77
Xue-long Wu, Zhi-Hong Liu, Zhang-hua Hu, Ruizhi Huang (2014)
BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.Journal of integrative plant biology, 56 6
I. Feussner, A. Zienkiewicz (2018)
Faculty Opinions recommendation of Trehalose 6-Phosphate Positively Regulates Fatty Acid Synthesis by Stabilizing WRINKLED1.Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature
E. Bennett, Jeremy Roberts, C. Wagstaff (2011)
The role of the pod in seed development: strategies for manipulating yield.The New phytologist, 190 4
Peizhong Zheng, William Allen, K. Roesler, Mark Williams, Shirong Zhang, Jiming Li, K. Glassman, Jerry Ranch, D. Nubel, William Solawetz, D. Bhattramakki, V. Llaca, S. Deschamps, G. Zhong, M. Tarczynski, Bo Shen (2008)
A phenylalanine in DGAT is a key determinant of oil content and composition in maizeNature Genetics, 40
Yingqi Cai, Patrick Horn (2024)
Packaging "vegetable oils": Insights into plant lipid droplet proteins.Plant physiology
Nischal Karki, Philip Bates (2018)
The effect of light conditions on interpreting oil composition engineering in Arabidopsis seedsPlant Direct, 2
Heping Zhang, Sam Flottmann (2018)
Source-sink manipulations indicate seed yield in canola is limited by source availabilityEuropean Journal of Agronomy, 96
Yinshuai Tian, Xueyan Lv, G. Xie, Linghui Wang, T. Dai, Xiaobo Qin, Fang Chen, Ying Xu (2019)
FAX2 mediates fatty acids export from plastid in developing Arabidopsis seeds.Plant & cell physiology
Kiyoul Park, Truyen Quach, Teresa Clark, Hyojin Kim, Tieling Zhang, Mengyuan Wang, Ming Guo, Shirley Sato, Tara Nazarenus, Rostislav Blume, Yaroslav Blume, Chi Zhang, Stephen Moose, Kankshita Swaminathan, Jorg Schwender, Tom Clemente, E. Cahoon (2024)
Development of vegetative oil sorghum: From lab‐to‐fieldPlant Biotechnology Journal, 23
V. Prabhakar, Tanja Löttgert, S. Geimer, P. Dörmann, Stephan Krüger, V. Vijayakumar, L. Schreiber, Cornelia Göbel, Kirstin Feussner, I. Feussner, Kay Marin, P. Staehr, Kirsten Bell, U. Flügge, R. Häusler (2010)
Phosphoenolpyruvate Provision to Plastids Is Essential for Gametophyte and Sporophyte Development in Arabidopsis thaliana[C][W]Plant Cell, 22
Oil-producing metabo-lons containing DGAT1 use separate substrate pools from those
Wei Ma, Que Kong, Jenny Mantyla, Yang Yang, J. Ohlrogge, C. Benning (2016)
14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1.The Plant journal : for cell and molecular biology, 88 2
S. Ruuska, J. Schwender, J. Ohlrogge (2004)
The Capacity of Green Oilseeds to Utilize Photosynthesis to Drive Biosynthetic Processes1Plant Physiology, 136
Jean-Christophe Cocuron, M. Koubaa, Rebecca Kimmelfield, Zacchary Ross, A. Alonso (2019)
A Combined Metabolomics and Fluxomics Analysis Identifies Steps Limiting Oil Synthesis in Maize Embryos1[OPEN]Plant Physiology, 181
B. Babu, R. Mathur, G. Ravichandran, P. Anita, M. Venu (2019)
Genome wide association study (GWAS) and identification of candidate genes for yield and oil yield related traits in oil palm (Eleaeis guineensis) using SNPs by genotyping-based sequencing.Genomics
T. Vanhercke, J. Dyer, R. Mullen, Aruna Kilaru, M. Rahman, J. Petrie, A. Green, O. Yurchenko, S. Singh (2019)
Metabolic engineering for enhanced oil in biomass.Progress in lipid research, 74
Jing Liu, Wei Hua, Hongli Yang, Gaomiao Zhan, Rong-Jun Li, Linbin Deng, Xin-Fa Wang, Gui-Hua Liu, Han-Zhong Wang (2012)
The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesisJournal of Experimental Botany, 63
Ze‐Hua Guo, Shiu-Cheung Lung, Mohd Hamdan, M. Chye (2022)
Interactions between plant lipid-binding proteins and their ligands.Progress in lipid research
Qing Liu, Q. Guo, S. Akbar, Yao Zhi, A. Tahchy, Madeline Mitchell, Zhongy Li, P. Shrestha, T. Vanhercke, J. Ral, Guolu Liang, Ming-Bo Wang, R. White, P. Larkin, S. Singh, J. Petrie (2016)
Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategyPlant Biotechnology Journal, 15
Doug Allen, J. Ohlrogge, Y. Shachar-Hill (2009)
The role of light in soybean seed filling metabolism.The Plant journal : for cell and molecular biology, 58 2
L. Yonghong (2011)
Breeding Technologies and Germplasm Innovation on Extra-high-oil Content in Brassica napus
Tengfei Zhang, Tingting Wu, Liwei Wang, Bingjun Jiang, Caixin Zhen, Shan Yuan, W. Hou, Cunxiang Wu, T. Han, Shi Sun (2019)
A Combined Linkage and GWAS Analysis Identifies QTLs Linked to Soybean Seed Protein and Oil ContentInternational Journal of Molecular Sciences, 20
K. Petersen, Kevin Maki, Philip Calder, Martha Belury, Mark Messina, Carol Kirkpatrick, William Harris (2024)
Perspective on the health effects of unsaturated fatty acids and commonly consumed plant oils high in unsaturated fatThe British Journal of Nutrition, 132
Ran Tian, Fangfang Wang, Qiaolin Zheng, Venus Niza, A. Downie, S. Perry (2020)
Direct and Indirect Targets of the Arabidopsis Seed Transcription Factor ABSCISIC ACID INSENSITIVE3.The Plant journal : for cell and molecular biology
Contribution of the leaf and silique photosynthesis to the seeds yield and quality of oilseed rape in reproductive stage
Zhikun Wang, Yuanzhuo Wang, Ping Shang, Chao Yang, Mingming Yang, Jinxiu Huang, Baizheng Ren, Zhaohui Zuo, Qingyan Zhang, Wenbin Li, Boem-Heon Song (2022)
Overexpression of Soybean GmWRI1a Stably Increases the Seed Oil Content in SoybeanInternational Journal of Molecular Sciences, 23
L. Mokrani, L. Gentzbittel, F. Azanza, L. Fitamant, G. Al-Chaarani, A. Sarrafi (2002)
Mapping and analysis of quantitative trait loci for grain oil content and agronomic traits using AFLP and SSR in sunflower (Helianthus annuus L.)Theoretical and Applied Genetics, 106
Lihang Xie, Jiayuan Hu, Zhenguo Yan, Xinyao Li, Sailong Wei, Ruiling Xu, Weizong Yang, Huihui Gu, Qingyu Zhang (2023)
Tree peony transcription factor PrWRI1 enhances seed oil accumulationBMC Plant Biology, 23
(1996)
Leaf effect on yield of rape ( Brassica napus ) in late developmental phase
W. Liu, Hua Liu, L. Qu (2013)
Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seedsTheoretical and Applied Genetics, 126
S. Rawsthorne (2002)
Carbon flux and fatty acid synthesis in plants.Progress in lipid research, 41 2
Jianjiang Ma, Bing Jia, Yingying Bian, Wen-feng Pei, Jikun Song, Man Wu, Wen-kui Wang, Kashif, Shahzad, Li Wang, Bingbing Zhang, Pan Feng, Liupeng Yang, Jinfa Zhang, Jiwen Yu (2024)
Genomic and co-expression network analyses reveal candidate genes for oil accumulation based on an introgression population in Upland cotton (Gossypium hirsutum).TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, 137 1
Ke-Lin Huang, Jing Tian, Huan Wang, Yihan Fu, Yang Li, Yong Zheng, Xue-Bao Li (2021)
Fatty acid export protein BnFAX6 functions in lipid synthesis and axillary bud growth in Brassica napus.Plant physiology, 186 4
S. Singer, Jitao Zou, R. Weselake (2016)
Abiotic factors influence plant storage lipid accumulation and composition.Plant science : an international journal of experimental plant biology, 243
Ming Lin, D. Oliver (2008)
The Role of Acetyl-Coenzyme A Synthetase in Arabidopsis1[OA]Plant Physiology, 147
Hui Jin, X. Yang, Haibin Zhao, Xizhang Song, Y. Tsvetkov, Yue Wu, Qiang Gao, Rui Zhang, Jumei Zhang (2023)
Genetic analysis of protein content and oil content in soybean by genome-wide association studyFrontiers in Plant Science, 14
Guohua Chai, Zetao Bai, F. Wei, G. King, Chenggang Wang, Lei Shi, C. Dong, Hong Chen, Shengyi Liu (2010)
Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markersTheoretical and Applied Genetics, 120
Kang Chen, Yongtai Yin, Yiran Ding, Hongbo Chao, Maoteng Li (2023)
Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napusInternational Journal of Molecular Sciences, 24
Yaduru Shasidhar, M. Vishwakarma, M. Pandey, P. Janila, M. Variath, S. Manohar, S. Nigam, B. Guo, R. Varshney (2017)
Molecular Mapping of Oil Content and Fatty Acids Using Dense Genetic Maps in Groundnut (Arachis hypogaea L.)Frontiers in Plant Science, 8
Steven King, J. Lunn, R. Furbank (1997)
Carbohydrate Content and Enzyme Metabolism in Developing Canola Siliques, 114
Wen Zhang, Li Tang, Jing Peng, Li Zhai, Qiu Ma, Xian Zhang, Y. Su (2024)
A WRI1-dependent module is essential for the accumulation of auxin and lipid in somatic embryogenesis of Arabidopsis thaliana.The New phytologist
Qingyang Tan, B. Han, M. Haque, Yue Wang, Ye-bai Li, Di Wu, AizhongLiu (2022)
The molecular mechanism of WRINKLED1 transcription factor regulating oil accumulation in developing seeds of castor beanPlant Diversity, 45
Julius Sagun, Umesh Yadav, A. Alonso (2023)
Progress in understanding and improving oil content and quality in seedsFrontiers in Plant Science, 14
A. Rajavel, Selina Klees, Johanna-Sophie Schlüter, Hendrik Bertram, Kun Lu, A. Schmitt, M. Gültas (2021)
Unravelling the Complex Interplay of Transcription Factors Orchestrating Seed Oil Content in Brassica napus L.International Journal of Molecular Sciences, 22
Wenwen Wang, Ying Sun, Peng Yang, Xiaoyan Cai, Le Yang, Junrui Ma, Yun-sheng Ou, Tianpeng Liu, I. Ali, Dajun Liu, Jian Zhang, Zhonghua Teng, K. Guo, Dexin Liu, Fang Liu, Zhengsheng Zhang (2019)
A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cottonBMC Genomics, 20
Yuzhou Yang, Que Kong, Wan Tee, Yuqing Li, Pui Low, Barunava Patra, Liang Guo, Lijuan Yuan, Wei Ma (2023)
Transcription factor bZIP52 modulates Arabidopsis seed oil biosynthesis through interaction with WRINKLED1.Plant physiology
J. Pelletier, R. Kwong, Soomin Park, Brandon Le, Russell Baden, Alexandro Cagliari, Meryl Hashimoto, M. Munoz, R. Fischer, R. Goldberg, J. Harada (2017)
LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed developmentProceedings of the National Academy of Sciences, 114
Dong Li, Changyu Jin, Shaowei Duan, Yana Zhu, Shuanghui Qi, Kaige Liu, Chenhao Gao, Haoli Ma, Meng Zhang, Yuncheng Liao, Mingxun Chen (2016)
MYB89 Transcription Factor Represses Seed Oil Accumulation1[OPEN]Plant Physiology, 173
Shande Tang, F. Peng, Q. Tang, Yunhao Liu, Hui Xia, Xuan Yao, Shaoping Lu, Liang Guo (2022)
BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napusJournal of Advanced Research, 42
Gene expression and DNA methylation altering lead to the high oil content in wild allotetraploid peanut ( A. mon-ticola )
Dan Zhang, Hengyou Zhang, Zhenbin Hu, Shanshan Chu, Kaiye Yu, Lingling Lv, Yuming Yang, Xiangqian Zhang, Xi Chen, Guizhen Kan, Yang Tang, Y. An, Deyue Yu (2019)
Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domesticationPLoS Genetics, 15
北条 良夫, 加藤 眞次郎, 小林 宏信 (1972)
Photosynthetic Activity of the Pods of Rape Plants (Brassica napus L.) and the Contribution of the Pods to the Ripening of Rape-seeds
Wanjun Hao, Shihang Fan, Wei Hua, Hanzhong Wang (2014)
Effective Extraction and Assembly Methods for Simultaneously Obtaining Plastid and Mitochondrial GenomesPLoS ONE, 9
Yongtai Yin, N. Raboanatahiry, Kang Chen, Xinfeng Chen, Tian Tian, Jianqiang Jia, Hongsheng He, Jianjie He, Zhenyi Guo, Longjiang Yu, Maoteng Li (2022)
Class A lysophosphatidic acid acyltransferase 2 from Camelina sativa promotes very long-chain fatty acids accumulation in phospholipid and triacylglycerol.The Plant journal : for cell and molecular biology
C. Boulard, J. Thévenin, O. Tranquet, V. Laporte, L. Lepiniec, B. Dubreucq (2018)
LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed.Biochimica et biophysica acta. Gene regulatory mechanisms, 1861 5
Mi Kim, I. Jang, N. Chua (2016)
The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor1[OPEN]Plant Physiology, 171
Guangqin Cai, Geliang Wang, Sang-Chul Kim, Jianwu Li, Yongming Zhou, Xuemin Wang (2020)
Increased expression of fatty acid and ABC transporters enhances seed oil production in camelinaBiotechnology for Biofuels, 14
Jilian Fan, Zhiyang Zhai, Chengshi Yan, Changcheng Xu (2015)
Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 Interacts with TGD1, TGD2, and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to PlastidsPlant Cell, 27
Yuzhou Yang, Que Kong, Audrey Lim, Shaoping Lu, Hu Zhao, Liang Guo, Lijuan Yuan, W. Ma (2022)
Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectivesPlant Communications, 3
A. Souza, S. Burgess, Lynn Doran, Jeffrey Hansen, Lusya Manukyan, Nina Maryn, Dhananjay Gotarkar, L. Leonelli, K. Niyogi, S. Long (2022)
Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotectionScience, 377
Plant oil production is crucial for meeting the global demand for vegetable oils providing essential fatty acids and energy and for various industry uses. Plant oil biosynthesis is a complex biological process. Understanding the process is essential for improving oil crop productivity and nutritional quality. To target genetic improvement strategies of oil content, this review attempts to provide a broad view of oil biosynthesis in terms of the oil biosynthesis chain and was thus arranged into four sections: the code/control center of oil production—genetic and genomic insight into seed oil content control; the manufacturing center of oil production—oil biosynthesis and its regulation; the upstream raw material supply chains of oil production—carbon source, energy, and reductants; and the progresses, challenges, and strategies—oil content improvement by conventional and biotechnological breeding in the past and future. Within these sections, we highlight major-effect quantitative trait loci of oil content and the WRINKLED1- and SEEDSTICK-centered regulatory networks of oil biosynthesis and then revisit/update the significance of both photosynthetic and maternal effect on oil content and the central metabolic pathways and related bypasses in oil accumulation. Strategies for further improvement of oil content are discussed toward constructing integrated frameworks for increasing oil productivity. Overall, with this review we aim to consolidate the recent progress regarding oil biosynthesis in crops and provide insights into future research and practical applications to crop oil production.
Plant Physiology – Oxford University Press
Published: Aug 11, 2025
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.