Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yong Gao, Kristin Fencil, Xiaoping Xu, Debbie Schwedler, J. Gilbert, R. Herman (2006)
Purification and characterization of a chimeric Cry1F delta-endotoxin expressed in transgenic cotton plants.Journal of agricultural and food chemistry, 54 3
R. Jackson, J. Bradley, J. Duyn, Fred Gould (2004)
Comparative Production of Helicoverpa zea (Lepidoptera: Noctuidae) from Transgenic Cotton Expressing Either One or Two Bacillus thuringiensis Proteins with and without Insecticide Oversprays, 97
Abraham Esteve-Núñez, Antonio Caballero, Juan Ramos (2001)
Biological Degradation of 2,4,6-TrinitrotolueneMicrobiology and Molecular Biology Reviews, 65
J. Ferré, J. Rie (1995)
Biochemistry and genetics of insect resistance to Bacillus thuringiensis.Annual review of entomology, 47
Fred Gould, A. Martínez-Ramírez, A. Anderson, Juan Ferré, Francisco Silva, W. Moar (1992)
Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens.Proceedings of the National Academy of Sciences of the United States of America, 89 17
J. Greenplate (1999)
Quantification of Bacillus thuringiensis Insect Control Protein Cry1Ac Over Time in Bollgard Cotton Fruit and TerminalsJournal of Economic Entomology, 92
(2006)
SPSS base 14.0 for Windows user's guide
J. Rie, S. Jansens, Herman Höfte, D. Degheele, H. Mellaert (1990)
Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxinsApplied and Environmental Microbiology, 56
A. Sayyed, R. Haward, S. Herrero, J. Ferré, D. Wright (2000)
Genetic and Biochemical Approach for Characterization of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Field Population of the Diamondback Moth, Plutella xylostellaApplied and Environmental Microbiology, 66
Joel Griffitts, R. Aroian (2005)
Many roads to resistance: how invertebrates adapt to Bt toxinsBioEssays, 27
B. Tabashnik, Y. Liu, T. Malvar, D. Heckel, Luke Masson, V. Ballester, F. Granero, J. Ménsua, Juan Ferré (1997)
Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis.Proceedings of the National Academy of Sciences of the United States of America, 94 24
F. Perlak, R. Deaton, T. Armstrong, R. Fuchs, S. Sims, J. Greenplate, D. Fischhoff (1990)
Insect Resistant Cotton PlantsBio/Technology, 8
R. Akhurst, W. James, L. Bird, C. Beard (2003)
Resistance to the Cry1Ac δ-Endotoxin of Bacillus thuringiensis in the Cotton Bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), 96
B. Tabashnik, T. Dennehy, M. Sims, K. Larkin, G. Head, W. Moar, Y. Carrière (2002)
Control of Resistant Pink Bollworm (Pectinophora gossypiella) by Transgenic Cotton That Produces Bacillus thuringiensis Toxin Cry2AbApplied and Environmental Microbiology, 68
(2001)
Biopesticides registration action document : Bacillus thuringiensis plant incorporated protectants
B. Knowles, Peter Knight, D. Ellar (1991)
N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensisProceedings of the Royal Society of London. Series B: Biological Sciences, 245
A. Burd, F. Gould, J. Bradley, J. Duyn, W. Moar (2003)
Estimated Frequency of Nonrecessive Bt Resistance Genes in Bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Eastern North Carolina, 96
K. Kranthi, S. Kranthi, S. Ali, S. Banerjee (2000)
Resistance to 'CryIAc δ-endotoxin of Bacillus thuringiensis' in a laboratory selected strain of Helicoverpa armigera (Hubner).Current Science, 78
Xinjun Xu, Li’ang Yu, Yidong Wu (2005)
Disruption of a Cadherin Gene Associated with Resistance to Cry1Ac δ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigeraApplied and Environmental Microbiology, 71
N. Innes (2006)
Global Status of Commercialized Biotech/GM Crops: 2005. ISAAA Briefs No. 34. By C. James. Ithaca, NY, USA: ISAAA (2005), pp. 46, US$50.00. ISBN 1-892456-38-9Experimental Agriculture, 42
P. Munson, D. Rodbard (1980)
Ligand: a versatile computerized approach for characterization of ligand-binding systems.Analytical biochemistry, 107 1
(1998)
The Environmental Protection Agency's white paper on Bt plant-pesticide resistance management. Publication 739-S-98-001
J. William, Moar, J. Trumble, Robert Hice, Paul Backman (1994)
Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leaf-colonizing strain of Bacillus cereusApplied and Environmental Microbiology, 60
S. Karim, S. Riazuddin, F. Gould, D. Dean (2000)
Determination of Receptor Binding Properties of Bacillus thuringiensis δ-Endotoxins to Cotton Bollworm (Helicoverpa zea) and Pink Bollworm (Pectinophora gossypiella) Midgut Brush Border Membrane VesiclesPesticide Biochemistry and Physiology, 67
R. Luttrell, L. Wan, K. Knighten (1999)
Variation in Susceptibility of Noctuid (Lepidoptera) Larvae Attacking Cotton and Soybean to Purified Endotoxin Proteins and Commercial Formulations of Bacillus thuringiensisJournal of Economic Entomology, 92
B. Tabashnik, Y. Carrière, T. Dennehy, S. Morin, M. Sisterson, R. Roush, A. Shelton, Jian-Zhou Zhao (2003)
Insect Resistance to Transgenic Bt Crops: Lessons from the Laboratory and Field, 96
L. English, H. Robbins, M. Tersch, C. Kulesza, D. Avé, D. Coyle, C. Jany, S. Slatin (1994)
Mode of action of CryIIA: a Bacillus thuringiensis delta-endotoxinInsect Biochemistry and Molecular Biology, 24
D. Lightwood, D. Ellar, P. Jarrett (2000)
Role of Proteolysis in Determining Potency ofBacillus thuringiensis Cry1Ac δ-EndotoxinApplied and Environmental Microbiology, 66
M. Ali, R. Luttrell, S. Young (2006)
Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) Populations to Cry1Ac Insecticidal Protein, 99
R. Roush (1998)
Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not?Philosophical Transactions of the Royal Society B, 353
Brenda Oppert, Karl Kramer, D. Johnson, S. Macintosh, W. Mcgaughey (1994)
Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella.Biochemical and biophysical research communications, 198 3
M. Lee, P. Miles, J. Chen (2006)
Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts.Biochemical and biophysical research communications, 339 4
J. Adamczyk, D. Hardee, L. Adams, D. Sumerford (2001)
Correlating Differences in Larval Survival and Development of Bollworm (Lepidoptera: Noctuidae) and Fall Armyworm (Lepidoptera: Noctuidae) to Differential Expression of Cry1A(c) δ-Endotoxin in Various Plant Parts Among Commercial Cultivars of Transgenic Bacillus thuringiensis Cotton, 94
S. Bates, Jian-Zhou Zhao, R. Roush, A. Shelton (2005)
Insect resistance management in GM crops: past, present and futureNature Biotechnology, 23
Anna Estela, B. Escriche, J. Ferré (2004)
Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae)Applied and Environmental Microbiology, 70
Christin Choma, W. Surewicz, Paul Carey, M. Pozsgay, Tina Raynor, Harvey Kaplan (1990)
Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis. Structural implications.European journal of biochemistry, 189 3
J. Estruch, G. Warren, M. Mullins, Gordon Nye, J. Craig, M. Koziel (1996)
Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects.Proceedings of the National Academy of Sciences of the United States of America, 93 11
J. Jurat-Fuentes, F. Gould, M. Adang (2002)
Altered Glycosylation of 63- and 68-Kilodalton Microvillar Proteins in Heliothis virescens Correlates with Reduced Cry1 Toxin Binding, Decreased Pore Formation, and Increased Resistance to Bacillus thuringiensis Cry1 ToxinsApplied and Environmental Microbiology, 68
CAO-GUO Yu, M. Mullins, G. Warren, Michael Koziel, J. Estruch (1997)
The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insectsApplied and Environmental Microbiology, 63
M. Bradford (1976)
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical biochemistry, 72
Huarong Li, L. Buschman, F. Huang, K. Zhu, B. Bonning, B. Oppert (2007)
DiPel-Selected Ostrinia nubilalis Larvae Are Not Resistant to Transgenic Corn Expressing Bacillus thuringiensis Cry1Ab, 100
M. Lee, F. Rajamohan, F. Gould, D. Dean (1995)
Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alterationApplied and Environmental Microbiology, 61
B. Tabashnik, Yong‐Biao Liu, R. Maagd, T. Dennehy (2000)
Cross-Resistance of Pink Bollworm (Pectinophora gossypiella) to Bacillus thuringiensis ToxinsApplied and Environmental Microbiology, 66
J. Rie, S. Jansens, Herman Höfte, D. Degheele, H. Mellaert (1989)
Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects.European journal of biochemistry, 186 1-2
F. Gould, A. Anderson, A. Reynolds, Lara Bumgarner, W. Moar (1995)
Selection and Genetic Analysis of a Heliothis virescens (Lepidoptera: Noctuidae) Strain with High Levels of Resistance to Bacillus thuringiensis ToxinsJournal of Economic Entomology, 88
K. Usmani, Charles Knowles (2001)
Toxicity of Pyrethroids and Effect of Synergists to Larval and Adult Helicoverpa zea, Spodoptera frugiperda, and Agrotis ipsilon(Lepidoptera: Noctuidae), 94
Ping Wang, Jian-Zhou Zhao, Ana Rodrigo-Simón, W. Kain, A. Janmaat, A. Shelton, J. Ferré, J. Myers (2006)
Mechanism of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Greenhouse Population of the Cabbage Looper, Trichoplusia niApplied and Environmental Microbiology, 73
W. Moar, M. Pusztai‐Carey, H. Faassen, Dirk Bosch, Roger Frutos, C. Rang, Ke Luo, M. Adang (1995)
Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae)Applied and Environmental Microbiology, 61
L. Karumbaiah, B. Oppert, J. Jurat-Fuentes, M. Adang (2007)
Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae).Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 146 1
(1987)
Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly
S. Morin, R. Biggs, M. Sisterson, Laura Shriver, C. Ellers-kirk, Dawn Higginson, D. Holley, L. Gahan, D. Heckel, Y. Carrière, T. Dennehy, Judith Brown, B. Tabashnik (2003)
Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollwormProceedings of the National Academy of Sciences of the United States of America, 100
M. Keller, B. Sneh, N. Strizhov, Evgenya Prudovsky, A. Regev, C. Koncz, J. Schell, A. Zilberstein (1996)
Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC.Insect biochemistry and molecular biology, 26 4
H. Siqueira, J. González-Cabrera, J. Ferré, Ronald Flannagan, B. Siegfried (2006)
Analyses of Cry1Ab Binding in Resistant and Susceptible Strains of the European Corn Borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae)Applied and Environmental Microbiology, 72
Applied and Environmental Microbiology – Unpaywall
Published: Nov 17, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.