Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Johnson, A. Pavlovsky, D. Ortwine, F. Prior, C. Man, D. Bornemeier, C. Banotai, W. Mueller, P. McConnell, Chunhong Yan, V. Baragi, C. Lesch, W. Roark, Michael Wilson, K. Datta, Roberto Guzman, Hyo-Kyung Han, R. Dyer (2007)
Discovery and Characterization of a Novel Inhibitor of Matrix Metalloprotease-13 That Reduces Cartilage Damage in Vivo without Joint Fibroplasia Side Effects*Journal of Biological Chemistry, 282
Satoru Kamekura, Kazuto Hoshi, Takashi Shimoaka, U. Chung, H. Chikuda, T. Yamada, M. Uchida, N. Ogata, A. Seichi, Kozo Nakamura, H. Kawaguchi (2005)
Osteoarthritis development in novel experimental mouse models induced by knee joint instability.Osteoarthritis and cartilage, 13 7
T. Aizawa, S. Kokubun, Y. Tanaka (1997)
Apoptosis and proliferation of growth plate chondrocytes in rabbits.The Journal of bone and joint surgery. British volume, 79 3
V. Knäuper, S. Cowell, Bryan Smith, C. López-Otín, M. O'Shea, H. Morris, L. Zardi, G. Murphy (1997)
The Role of the C-terminal Domain of Human Collagenase-3 (MMP-13) in the Activation of Procollagenase-3, Substrate Specificity, and Tissue Inhibitor of Metalloproteinase Interaction*The Journal of Biological Chemistry, 272
J. Monfort, G. Tardif, P. Reboul, F. Mineau, P. Roughley, J. Pelletier, J. Martel-Pelletier (2006)
Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage siteArthritis Research & Therapy, 8
Kanoh Yokozeki, Kazuhiro Abe, S. Watanabe, Kohta Suda, Kiyoshi Kaneda (1998)
Acellular calcified columns in the normal growth plate of mouse vertebrae.Archives of histology and cytology, 61 3
B. Caterson, C. Flannery, C. Hughes, C. Little (2000)
Mechanisms involved in cartilage proteoglycan catabolism.Matrix biology : journal of the International Society for Matrix Biology, 19 4
A. Manicone, J. McGuire (2008)
Matrix metalloproteinases as modulators of inflammation.Seminars in cell & developmental biology, 19 1
H. Kawaguchi (2009)
Regulation of Osteoarthritis Development by Wnt–β‐catenin Signaling Through the Endochondral Ossification ProcessJournal of Bone and Mineral Research, 24
C. Overall, C. Blobel (2007)
In search of partners: linking extracellular proteases to substratesNature Reviews Molecular Cell Biology, 8
L. Dahlberg, R. Billinghurst, Paul Manner, F. Nelson, G. Webb, M. Ionescu, A. Reiner, M. Tanzer, D. Zukor, Jeffrey Chen, H. Wart, A. Poole (2000)
Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrix metalloproteinase 1).Arthritis and rheumatism, 43 3
T. Vinardell, V. Dejica, A. Poole, J. Mort, H. Richard, S. Laverty (2009)
Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis.Osteoarthritis and cartilage, 17 3
H. Stanton, F. Rogerson, C. East, S. Golub, K. Lawlor, Clare Meeker, C. Little, K. Last, P. Farmer, I. Campbell, A. Fourie, A. Fosang (2005)
ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitroNature, 434
(2005)
Disease progression in surgically induced murine osteoarthritis is strain and sex dependent
L. Raggatt, S. Jefcoat, I. Choudhury, S. Williams, M. Tiku, N. Partridge (2006)
Matrix metalloproteinase-13 influences ERK signalling in articular rabbit chondrocytes.Osteoarthritis and cartilage, 14 7
M. Karsdal, S. Madsen, C. Christiansen, K. Henriksen, A. Fosang, B. Sondergaard (2008)
Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activityArthritis Research & Therapy, 10
C. Little, Clare Meeker, S. Golub, K. Lawlor, P. Farmer, Susan Smith, A. Fosang (2007)
Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair.The Journal of clinical investigation, 117 6
Danielle Behonick, Zhiqing Xing, Shirley Lieu, J. Buckley, J. Lotz, R. Marcucio, Z. Werb, T. Miclau, C. Colnot (2007)
Role of Matrix Metalloproteinase 13 in Both Endochondral and Intramembranous Ossification during Skeletal RegenerationPLoS ONE, 2
Tomoyuki Sasaki, Y. Ishibashi, Y. Okamura, S. Toh, Taisuke Sasaki (2002)
MRI evaluation of growth plate closure rate and pattern in the normal knee joint.The journal of knee surgery, 15 2
Y. Liu, J. Ranish, R. Aebersold, S. Hahn (2001)
Yeast Nuclear Extract Contains Two Major Forms of RNA Polymerase II Mediator Complexes*The Journal of Biological Chemistry, 276
F. Mercuri, R. Maciewicz, J. Tart, K. Last, A. Fosang (2000)
Mutations in the Interglobular Domain of Aggrecan Alter Matrix Metalloproteinase and Aggrecanase Cleavage PatternsThe Journal of Biological Chemistry, 275
William Wu, R. Billinghurst, I. Pidoux, J. Antoniou, D. Zukor, M. Tanzer, A. Poole (2002)
Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13.Arthritis and rheumatism, 46 8
M. Janusz, A. Bendele, K. Brown, Taiwo Olabisi, L. Hsieh, S. Heitmeyer (2002)
Induction of osteoarthritis in the rat by surgical tear of the meniscus: Inhibition of joint damage by a matrix metalloproteinase inhibitor.Osteoarthritis and cartilage, 10 10
K. Takahi, J. Hashimoto, Kenji Hayashida, K. Shi, Hiroshi Takano, Hideki Tsuboi, Y. Matsui, T. Nakase, Tetsuya Tomita, T. Ochi, Hideki Yoshikawa (2002)
Early closure of growth plate causes poor growth of long bones in collagen-induced arthritis rats.Journal of musculoskeletal & neuronal interactions, 2 4
L. Kevorkian, D. Young, C. Darrah, S. Donell, L. Shepstone, S. Porter, S. Brockbank, D. Edwards, A. Parker, I. Clark (2004)
Expression profiling of metalloproteinases and their inhibitors in cartilage.Arthritis and rheumatism, 50 1
M. Karsdal, D. Leeming, E. Dam, K. Henriksen, P. Alexandersen, P. Pastoureau, R. Altman, C. Christiansen (2008)
Should subchondral bone turnover be targeted when treating osteoarthritis?Osteoarthritis and cartilage, 16 6
M. Pratta, W. Yao, C. Decicco, M. Tortorella, Riu-Qin Liu, R. Copeland, R. Magolda, R. Newton, J. Trzăskos, E. Arner (2003)
Aggrecan Protects Cartilage Collagen from Proteolytic Cleavage*Journal of Biological Chemistry, 278
D. Stickens, Danielle Behonick, N. Ortéga, B. Heyer, B. Hartenstein, Ying Yu, A. Fosang, Marina Schorpp-Kistner, P. Angel, Z. Werb (2004)
Altered endochondral bone development in matrix metalloproteinase 13-deficient mice, 131
P. Krzeski, C. Buckland-Wright, G. Bálint, G. Cline, Karen Stoner, R. Lyon, J. Beary, W. Aronstein, T. Spector (2007)
Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled studyArthritis Research & Therapy, 9
N. Kosaki, H. Takaishi, Satoru Kamekura, Tokuhiro Kimura, Y. Okada, Li Minqi, N. Amizuka, U. Chung, Kozo Nakamura, H. Kawaguchi, Y. Toyama, J. D’Armiento (2007)
Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice.Biochemical and biophysical research communications, 354 4
Kohki Kawane, M. Ohtani, Keiko Miwa, Takuji Kizawa, Yoshiyuki Kanbara, Yoshichika Yoshioka, Hideki Yoshikawa, Shigekazu Nagata (2005)
Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritisNature, 434
S. Glasson, T. Blanchet, E. Morris (2007)
The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse.Osteoarthritis and cartilage, 15 9
C. Wu, E. Tchetina, F. Mwale, K. Hasty, I. Pidoux, A. Reiner, Jeffrey Chen, H. Wart, A. Poole (2002)
Proteolysis Involving Matrix Metalloproteinase 13 (Collagenase‐3) Is Required for Chondrocyte Differentiation That Is Associated with Matrix MineralizationJournal of Bone and Mineral Research, 17
E. Tchetina, Ginette Squires, A. Poole (2005)
Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions.The Journal of rheumatology, 32 5
Thomas Aigner, A. Zien, A. Gehrsitz, P. Gebhard, L. McKenna (2001)
Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology.Arthritis and rheumatism, 44 12
A. Fosang, F. Rogerson, C. East, H. Stanton (2008)
ADAMTS-5: the story so far.European cells & materials, 15
Masaki Inada, Yingmin Wang, M. Byrne, Mahboob Rahman, C. Miyaura, C. López-Otín, S. Krane (2004)
Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification.Proceedings of the National Academy of Sciences of the United States of America, 101 49
B. Bau, P. Gebhard, J. Haag, T. Knorr, E. Bartnik, T. Aigner (2002)
Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro.Arthritis and rheumatism, 46 10
M. Kinkel, R. Yagi, D. McBurney, Ashleigh Nugent, W. Horton (2004)
Age-related expression patterns of Bag-1 and Bcl-2 in growth plate and articular chondrocytes.The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, 279 2
H. Takaishi, Tokuhiro Kimura, S. Dalal, Y. Okada, J. D’Armiento (2008)
Joint diseases and matrix metalloproteinases: a role for MMP-13.Current pharmaceutical biotechnology, 9 1
M. Chambers, T. Kuffner, S. Cowan, K. Cheah, R. Mason (2002)
Expression of collagen and aggrecan genes in normal and osteoarthritic murine knee joints.Osteoarthritis and cartilage, 10 1
S. Gauci, S. Golub, L. Tutolo, C. Little, N. Sims, E. Lee, E. Mackie, A. Fosang (2008)
Modulating chondrocyte hypertrophy in growth plate and osteoarthritic cartilage.Journal of musculoskeletal & neuronal interactions, 8 4
V. Knäuper, Bryan Smith, Carlos López-Otín, Gillian Murphy (1997)
Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13).European journal of biochemistry, 248 2
D. Minond, Janelle Lauer-Fields, M. Cudic, C. Overall, D. Pei, K. Brew, R. Visse, H. Nagase, G. Fields (2006)
The Roles of Substrate Thermal Stability and P2 and P1′ Subsite Identity on Matrix Metalloproteinase Triple-helical Peptidase Activity and Collagen Specificity*Journal of Biological Chemistry, 281
H. Nagase, M. Kashiwagi (2003)
Aggrecanases and cartilage matrix degradationArthritis Research & Therapy, 5
M. Balbín, A. Fueyo, V. Knäuper, J. López, J. Álvarez, L. Sánchez, V. Quesada, J. Bordallo, G. Murphy, C. López-Otín (2001)
Identification and Enzymatic Characterization of Two Diverging Murine Counterparts of Human Interstitial Collagenase (MMP-1) Expressed at Sites of Embryo Implantation*The Journal of Biological Chemistry, 276
R. Billinghurst, L. Dahlberg, M. Ionescu, A. Reiner, R. Bourne, C. Rorabeck, Peter Mitchell, J. Hambor, O. Diekmann, H. Tschesche, Jeffrey Chen, H. Wart, A. Poole (1997)
Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage.The Journal of clinical investigation, 99 7
E. Tchetina, Masahiko Kobayashi, T. Yasuda, T. Meijers, I. Pidoux, A. Poole (2007)
Chondrocyte hypertrophy can be induced by a cryptic sequence of type II collagen and is accompanied by the induction of MMP-13 and collagenase activity: implications for development and arthritis.Matrix biology : journal of the International Society for Matrix Biology, 26 4
Aizawa (1997)
Apoptosis and proliferation of growth plate chondrocytes in rabbitsJ Bone Joint Surg Br, 79
L. Neuhold, L. Killar, Weiguang Zhao, M. Sung., L. Warner, J. Kulik, James Turner, William Wu, C. Billinghurst, T. Meijers, A. Poole, P. Babij, L. Degennaro (2001)
Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice.The Journal of clinical investigation, 107 1
Satoru Kamekura, Y. Kawasaki, K. Hoshi, Takashi Shimoaka, H. Chikuda, Z. Maruyama, T. Komori, Shingo Sato, S. Takeda, G. Karsenty, Kozo Nakamura, U. Chung, H. Kawaguchi (2006)
Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability.Arthritis and rheumatism, 54 8
R. Davidson, J. Waters, L. Kevorkian, C. Darrah, A. Cooper, S. Donell, I. Clark (2006)
Expression profiling of metalloproteinases and their inhibitors in synovium and cartilageArthritis Research & Therapy, 8
J. Melrose, Susan Smith, C. Little, J. Kitson, S. Hwa, P. Ghosh (2002)
Spatial and Temporal Localization of Transforming Growth Factor-&bgr;, Fibroblast Growth Factor-2, and Osteonectin, and Identification of Cells Expressing &agr;-Smooth Muscle Actin in the Injured Anulus Fibrosus: Implications for Extracellular Matrix RepairSpine, 27
J. Flannelly, M. Chambers, J. Dudhia, R. Hembry, Gillian Murphy, Roger Mason, Michael Bayliss (2002)
Metalloproteinase and tissue inhibitor of metalloproteinase expression in the murine STR/ort model of osteoarthritis.Osteoarthritis and cartilage, 10 9
M. Jiménez, M. Balbín, José López, J. Álvarez, T. Komori, C. López-Otín (1999)
Collagenase 3 Is a Target of Cbfa1, a Transcription Factor of the runt Gene Family Involved in Bone FormationMolecular and Cellular Biology, 19
M. Sabatini, C. Lesur, Marie Thomas, A. Chomel, P. Anract, G. Nanteuil, P. Pastoureau (2005)
Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a guinea pig model of osteoarthritis.Arthritis and rheumatism, 52 1
Objective To investigate the role of matrix metalloproteinase 13 (MMP‐13; collagenase 3) in osteoarthritis (OA). Methods OA was surgically induced in the knees of MMP‐13–knockout mice and wild‐type mice, and mice were compared. Histologic scoring of femoral and tibial cartilage aggrecan loss (0–3 scale), erosion (0–7 scale), and chondrocyte hypertrophy (0–1 scale), as well as osteophyte size (0–3 scale) and maturity (0–3 scale) was performed. Serial sections were stained for type X collagen and the MMP‐generated aggrecan neoepitope DIPEN. Results Following surgery, aggrecan loss and cartilage erosion were more severe in the tibia than femur (P < 0.01) and tibial cartilage erosion increased with time (P < 0.05) in wild‐type mice. Cartilaginous osteophytes were present at 4 weeks and underwent ossification, with size and maturity increasing by 8 weeks (P < 0.01). There was no difference between genotypes in aggrecan loss or cartilage erosion at 4 weeks. There was less tibial cartilage erosion in knockout mice than in wild‐type mice at 8 weeks (P < 0.02). Cartilaginous osteophytes were larger in knockout mice at 4 weeks (P < 0.01), but by 8 weeks osteophyte maturity and size were no different from those in wild‐type mice. Articular chondrocyte hypertrophy with positive type X collagen and DIPEN staining occurred in both wild‐type and knockout mouse joints. Conclusion Our findings indicate that structural cartilage damage in a mouse model of OA is dependent on MMP‐13 activity. Chondrocyte hypertrophy is not regulated by MMP‐13 activity in this model and does not in itself lead to cartilage erosion. MMP‐13 deficiency can inhibit cartilage erosion in the presence of aggrecan depletion, supporting the potential for therapeutic intervention in established OA with MMP‐13 inhibitors.
Arthritis & Rheumatism – Wiley
Published: Dec 1, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.