Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Ionic thermoelectric supercapacitors

Ionic thermoelectric supercapacitors Temperature gradients are generated by the sun and a vast array of technologies and can induce molecular concentration gradients in solutions via thermodiffusion (Soret effect). For ions, this leads to a thermovoltage that is determined by the thermal gradient ΔT across the electrolyte, together with the ionic Seebeck coefficient αi. So far, redox-free electrolytes have been poorly explored in thermoelectric applications due to a lack of strategies to harvest the energy from the Soret effect. Here, we report the conversion of heat into stored charge via a remarkably strong ionic Soret effect in a polymeric electrolyte (Seebeck coefficients as high as αi = 10 mV K−1). The ionic thermoelectric supercapacitor (ITESC) is charged under a temperature gradient. After the temperature gradient is removed, the stored electrical energy can be delivered to an external circuit. This new means to harvest energy is particularly suitable for intermittent heat sources like the sun. We show that the stored electrical energy of the ITESC is proportional to (ΔTαi)2. The resulting ITESC can convert and store several thousand times more energy compared with a traditional thermoelectric generator connected in series with a supercapacitor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Energy & Environmental Science Royal Society of Chemistry

Ionic thermoelectric supercapacitors

Royal Society of Chemistry — Apr 13, 2016

Loading next page...
 
/lp/royal-society-of-chemistry/ionic-thermoelectric-supercapacitors-s1bVxfxvao

References (40)

Datasource
Royal Society of Chemistry
Publisher site
See Article on Publisher Site

Abstract

Temperature gradients are generated by the sun and a vast array of technologies and can induce molecular concentration gradients in solutions via thermodiffusion (Soret effect). For ions, this leads to a thermovoltage that is determined by the thermal gradient ΔT across the electrolyte, together with the ionic Seebeck coefficient αi. So far, redox-free electrolytes have been poorly explored in thermoelectric applications due to a lack of strategies to harvest the energy from the Soret effect. Here, we report the conversion of heat into stored charge via a remarkably strong ionic Soret effect in a polymeric electrolyte (Seebeck coefficients as high as αi = 10 mV K−1). The ionic thermoelectric supercapacitor (ITESC) is charged under a temperature gradient. After the temperature gradient is removed, the stored electrical energy can be delivered to an external circuit. This new means to harvest energy is particularly suitable for intermittent heat sources like the sun. We show that the stored electrical energy of the ITESC is proportional to (ΔTαi)2. The resulting ITESC can convert and store several thousand times more energy compared with a traditional thermoelectric generator connected in series with a supercapacitor.

Journal

Energy & Environmental ScienceRoyal Society of Chemistry

Published: Apr 13, 2016

There are no references for this article.