Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.

Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell. Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or "thermocells"). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nano Letters Pubmed

Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.

Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.


Abstract

Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or "thermocells"). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.

Loading next page...
 
/lp/pubmed/harvesting-waste-thermal-energy-using-a-carbon-nanotube-based-thermo-tG8I46EklF

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1530-6984
eISSN
1530-6992
DOI
10.1021/nl903267n
pmid
20170193

Abstract

Low efficiencies and costly electrode materials have limited harvesting of thermal energy as electrical energy using thermo-electrochemical cells (or "thermocells"). We demonstrate thermocells, in practical configurations (from coin cells to cells that can be wrapped around exhaust pipes), that harvest low-grade thermal energy using relatively inexpensive carbon multiwalled nanotube (MWNT) electrodes. These electrodes provide high electrochemically accessible surface areas and fast redox-mediated electron transfer, which significantly enhances thermocell current generation capacity and overall efficiency. Thermocell efficiency is further improved by directly synthesizing MWNTs as vertical forests that reduce electrical and thermal resistance at electrode/substrate junctions. The efficiency of thermocells with MWNT electrodes is shown to be as high as 1.4% of Carnot efficiency, which is 3-fold higher than for previously demonstrated thermocells. With the cost of MWNTs decreasing, MWNT-based thermocells may become commercially viable for harvesting low-grade thermal energy.

Journal

Nano LettersPubmed

Published: Jun 16, 2010

There are no references for this article.