Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

The interpretation of reaction textures in Fe‐rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K 2 O–FeO–MgO–Al 2 O 3 –SiO 2 –H 2 O–TiO 2 –Fe 2 O 3

The interpretation of reaction textures in Fe‐rich metapelitic granulites of the Musgrave Block,... Fe‐rich metapelitic granulites of the Musgrave Block, central Australia, contain several symplectic and coronal reaction textures that post‐date a peak S2 metamorphic assemblage involving garnet, sillimanite, spinel, ilmenite, K‐feldspar and quartz. The earliest reaction textures involve spinel‐ and quartz‐bearing symplectites that enclose garnet and to a lesser extent sillimanite. The symplectic spinel and quartz are in places separated by later garnet and/or sillimanite coronas. The metamorphic effects of a later, D3, event are restricted to zones of moderate to high strain where a metamorphic assemblage of garnet, sillimanite, K‐feldspar, magnetite, ilmenite, quartz and biotite is preserved. Quantitative mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using Thermocalc 3.0 and the accompanying internally consistent dataset provide important constraints on the influence of TiO2 and Fe2O3 on biotite‐bearing and spinel‐bearing equilibria, respectively. Biotite‐bearing equilibria are shifted to higher temperatures and spinel‐bearing equilibria to higher pressures and lower temperatures in comparison to the equivalent equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH). The sequence of reaction textures involving spinel is consistent with a D2 P–T path that involved a small amount of decompression followed predominantly by cooling within a single mineral assemblage stability field. Thus, the reaction textures reflect changes in modal proportions within an equilibrium assemblage rather than the crossing of a univariant reaction. The D3 metamorphic assemblage is consistent with lower temperatures than those inferred for D2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Metamorphic Geology Wiley

The interpretation of reaction textures in Fe‐rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K 2 O–FeO–MgO–Al 2 O 3 –SiO 2 –H 2 O–TiO 2 –Fe 2 O 3

Loading next page...
 
/lp/wiley/the-interpretation-of-reaction-textures-in-fe-rich-metapelitic-r2QFiaFeTf

References (68)

Publisher
Wiley
Copyright
Copyright © 2002 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0263-4929
eISSN
1525-1314
DOI
10.1046/j.0263-4929.2001.00349.x
Publisher site
See Article on Publisher Site

Abstract

Fe‐rich metapelitic granulites of the Musgrave Block, central Australia, contain several symplectic and coronal reaction textures that post‐date a peak S2 metamorphic assemblage involving garnet, sillimanite, spinel, ilmenite, K‐feldspar and quartz. The earliest reaction textures involve spinel‐ and quartz‐bearing symplectites that enclose garnet and to a lesser extent sillimanite. The symplectic spinel and quartz are in places separated by later garnet and/or sillimanite coronas. The metamorphic effects of a later, D3, event are restricted to zones of moderate to high strain where a metamorphic assemblage of garnet, sillimanite, K‐feldspar, magnetite, ilmenite, quartz and biotite is preserved. Quantitative mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using Thermocalc 3.0 and the accompanying internally consistent dataset provide important constraints on the influence of TiO2 and Fe2O3 on biotite‐bearing and spinel‐bearing equilibria, respectively. Biotite‐bearing equilibria are shifted to higher temperatures and spinel‐bearing equilibria to higher pressures and lower temperatures in comparison to the equivalent equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH). The sequence of reaction textures involving spinel is consistent with a D2 P–T path that involved a small amount of decompression followed predominantly by cooling within a single mineral assemblage stability field. Thus, the reaction textures reflect changes in modal proportions within an equilibrium assemblage rather than the crossing of a univariant reaction. The D3 metamorphic assemblage is consistent with lower temperatures than those inferred for D2.

Journal

Journal of Metamorphic GeologyWiley

Published: Jan 1, 2002

There are no references for this article.