Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

The origins of granulites: a metamorphic perspective

The origins of granulites: a metamorphic perspective <jats:title>Abstract</jats:title><jats:p>Although many recent reviews emphasize a uniformity in granulite pressure–temperature (<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>) conditions and paths, granulites in reality preserve a spectrum of important petrogenetic features which indicate diversity in their modes of formation. A thorough survey of over 90 granulite terranes or occurrences reveals that over 50% of them record<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>conditions outside the 7.5 ± 1 kbar and 800 ± 50 °C average granulite regime preferred by many authors. In particular, an increasing number of very high temperature (900−1000 °C) terranes are being recognized, both on the basis of distinctive mineral assemblages and geothermobarometry. Petrogenetic grid and geothermobarometric approaches to the determination and interpretation of<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>histories are both evaluated within the context of reaction textures to demonstrate that the large range in<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>conditions is indeed real, and that both near-isothermal decompression (ITD) and near-isobaric cooling (IBC)<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>paths are important. Amphibolite–granulite transitions promoted by the passage of CO<jats:sub>2</jats:sub>-rich fluids, as observed in southern India and Sri Lanka, are exceptional and not representative of fluid-related processes in the majority of terranes. It is considered, on the contrary, that fluid-absent conditions are typical of most granulites at or near the time of their recorded thermal maxima.</jats:p><jats:p>ITD granulites are interpreted to have formed in crust thickened by collision, with magmatic additions being an important extra heat source. Erosion alone is not, however, considered to be the dominant post-collisional thinning process. Instead, the ITD paths are generated during more rapid thinning (1−2 mm/yr exposure) related to tectonic exhumation during moderate-rate or waning extension. IBC granulites may have formed in a variety of settings. Those which show anticlockwise<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>histories are interpreted to have formed in and beneath areas of voluminous magmatic accretion, with or without additional crustal extension. IBC granulites at shallow levels (&lt; 5 kbar) may also be formed during extension of normal thickness crust, but deeper-level IBC requires more complex models. Many granulites exhibiting IBC at deep crustal levels may have formed in thickened crust which underwent<jats:italic>very</jats:italic>rapid (5 mm/yr) extensional thinning subsequent to collision. It is suggested that the preservation of IBC paths rather than ITD paths in many granulites is primarily related to the<jats:italic>rate</jats:italic>and<jats:italic>timescale</jats:italic>of extensional thinning of thickened crust, and that hybrid ITD to IBC paths should also be observed.</jats:p><jats:p>Most IBC granulites, and probably many ITD granulites, have not been exposed at the Earth's surface as a result of the tectonic episodes which produced them, but have resided in the middle and lower crust for long periods of time (100−2000 Ma) following these events. The eventual exhumation of most granulite terranes only occur through their incorporation in later tectonic and magmatic events unrelated to their formation.</jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geological Magazine CrossRef

The origins of granulites: a metamorphic perspective

Geological Magazine , Volume 126 (3): 215-247 – May 1, 1989

The origins of granulites: a metamorphic perspective


Abstract

<jats:title>Abstract</jats:title><jats:p>Although many recent reviews emphasize a uniformity in granulite pressure–temperature (<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>) conditions and paths, granulites in reality preserve a spectrum of important petrogenetic features which indicate diversity in their modes of formation. A thorough survey of over 90 granulite terranes or occurrences reveals that over 50% of them record<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>conditions outside the 7.5 ± 1 kbar and 800 ± 50 °C average granulite regime preferred by many authors. In particular, an increasing number of very high temperature (900−1000 °C) terranes are being recognized, both on the basis of distinctive mineral assemblages and geothermobarometry. Petrogenetic grid and geothermobarometric approaches to the determination and interpretation of<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>histories are both evaluated within the context of reaction textures to demonstrate that the large range in<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>conditions is indeed real, and that both near-isothermal decompression (ITD) and near-isobaric cooling (IBC)<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>paths are important. Amphibolite–granulite transitions promoted by the passage of CO<jats:sub>2</jats:sub>-rich fluids, as observed in southern India and Sri Lanka, are exceptional and not representative of fluid-related processes in the majority of terranes. It is considered, on the contrary, that fluid-absent conditions are typical of most granulites at or near the time of their recorded thermal maxima.</jats:p><jats:p>ITD granulites are interpreted to have formed in crust thickened by collision, with magmatic additions being an important extra heat source. Erosion alone is not, however, considered to be the dominant post-collisional thinning process. Instead, the ITD paths are generated during more rapid thinning (1−2 mm/yr exposure) related to tectonic exhumation during moderate-rate or waning extension. IBC granulites may have formed in a variety of settings. Those which show anticlockwise<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>histories are interpreted to have formed in and beneath areas of voluminous magmatic accretion, with or without additional crustal extension. IBC granulites at shallow levels (&lt; 5 kbar) may also be formed during extension of normal thickness crust, but deeper-level IBC requires more complex models. Many granulites exhibiting IBC at deep crustal levels may have formed in thickened crust which underwent<jats:italic>very</jats:italic>rapid (5 mm/yr) extensional thinning subsequent to collision. It is suggested that the preservation of IBC paths rather than ITD paths in many granulites is primarily related to the<jats:italic>rate</jats:italic>and<jats:italic>timescale</jats:italic>of extensional thinning of thickened crust, and that hybrid ITD to IBC paths should also be observed.</jats:p><jats:p>Most IBC granulites, and probably many ITD granulites, have not been exposed at the Earth's surface as a result of the tectonic episodes which produced them, but have resided in the middle and lower crust for long periods of time (100−2000 Ma) following these events. The eventual exhumation of most granulite terranes only occur through their incorporation in later tectonic and magmatic events unrelated to their formation.</jats:p>

Loading next page...
 
/lp/crossref/the-origins-of-granulites-a-metamorphic-perspective-CxkUlv0Sh1

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
0016-7568
DOI
10.1017/s0016756800022330
Publisher site
See Article on Publisher Site

Abstract

<jats:title>Abstract</jats:title><jats:p>Although many recent reviews emphasize a uniformity in granulite pressure–temperature (<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>) conditions and paths, granulites in reality preserve a spectrum of important petrogenetic features which indicate diversity in their modes of formation. A thorough survey of over 90 granulite terranes or occurrences reveals that over 50% of them record<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>conditions outside the 7.5 ± 1 kbar and 800 ± 50 °C average granulite regime preferred by many authors. In particular, an increasing number of very high temperature (900−1000 °C) terranes are being recognized, both on the basis of distinctive mineral assemblages and geothermobarometry. Petrogenetic grid and geothermobarometric approaches to the determination and interpretation of<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>histories are both evaluated within the context of reaction textures to demonstrate that the large range in<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>conditions is indeed real, and that both near-isothermal decompression (ITD) and near-isobaric cooling (IBC)<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>paths are important. Amphibolite–granulite transitions promoted by the passage of CO<jats:sub>2</jats:sub>-rich fluids, as observed in southern India and Sri Lanka, are exceptional and not representative of fluid-related processes in the majority of terranes. It is considered, on the contrary, that fluid-absent conditions are typical of most granulites at or near the time of their recorded thermal maxima.</jats:p><jats:p>ITD granulites are interpreted to have formed in crust thickened by collision, with magmatic additions being an important extra heat source. Erosion alone is not, however, considered to be the dominant post-collisional thinning process. Instead, the ITD paths are generated during more rapid thinning (1−2 mm/yr exposure) related to tectonic exhumation during moderate-rate or waning extension. IBC granulites may have formed in a variety of settings. Those which show anticlockwise<jats:italic>P</jats:italic>–<jats:italic>T</jats:italic>histories are interpreted to have formed in and beneath areas of voluminous magmatic accretion, with or without additional crustal extension. IBC granulites at shallow levels (&lt; 5 kbar) may also be formed during extension of normal thickness crust, but deeper-level IBC requires more complex models. Many granulites exhibiting IBC at deep crustal levels may have formed in thickened crust which underwent<jats:italic>very</jats:italic>rapid (5 mm/yr) extensional thinning subsequent to collision. It is suggested that the preservation of IBC paths rather than ITD paths in many granulites is primarily related to the<jats:italic>rate</jats:italic>and<jats:italic>timescale</jats:italic>of extensional thinning of thickened crust, and that hybrid ITD to IBC paths should also be observed.</jats:p><jats:p>Most IBC granulites, and probably many ITD granulites, have not been exposed at the Earth's surface as a result of the tectonic episodes which produced them, but have resided in the middle and lower crust for long periods of time (100−2000 Ma) following these events. The eventual exhumation of most granulite terranes only occur through their incorporation in later tectonic and magmatic events unrelated to their formation.</jats:p>

Journal

Geological MagazineCrossRef

Published: May 1, 1989

There are no references for this article.