Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Mobility engineering and a metal–insulator transition in monolayer MoS2

Mobility engineering and a metal–insulator transition in monolayer MoS2 Two-dimensional (2D) materials are a new class of materials with interesting physical properties and applications ranging from nanoelectronics to sensing and photonics. In addition to graphene, the most studied 2D material, monolayers of other layered materials such as semiconducting dichalcogenides MoS2 or WSe2 are gaining in importance as promising channel materials for field-effect transistors (FETs). The presence of a direct bandgap in monolayer MoS2 due to quantum-mechanical confinement allows room-temperature FETs with an on/off ratio exceeding 108. The presence of high- κ dielectrics in these devices enhanced their mobility, but the mechanisms are not well understood. Here, we report on electrical transport measurements on MoS2 FETs in different dielectric configurations. The dependence of mobility on temperature shows clear evidence of the strong suppression of charged-impurity scattering in dual-gate devices with a top-gate dielectric. At the same time, phonon scattering shows a weaker than expected temperature dependence. High levels of doping achieved in dual-gate devices also allow the observation of a metal–insulator transition in monolayer MoS2 due to strong electron–electron interactions. Our work opens up the way to further improvements in 2D semiconductor performance and introduces MoS2 as an interesting system for studying correlation effects in mesoscopic systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Materials Springer Journals

Mobility engineering and a metal–insulator transition in monolayer MoS2

Nature Materials , Volume 12 (9) – Jun 23, 2013

Loading next page...
 
/lp/springer-journals/mobility-engineering-and-a-metal-insulator-transition-in-monolayer-qBAMf3gBCI

References (61)

Publisher
Springer Journals
Copyright
Copyright © 2013 by Nature Publishing Group
Subject
Materials Science; Materials Science, general; Optical and Electronic Materials; Biomaterials; Nanotechnology; Condensed Matter Physics
ISSN
1476-1122
eISSN
1476-4660
DOI
10.1038/nmat3687
Publisher site
See Article on Publisher Site

Abstract

Two-dimensional (2D) materials are a new class of materials with interesting physical properties and applications ranging from nanoelectronics to sensing and photonics. In addition to graphene, the most studied 2D material, monolayers of other layered materials such as semiconducting dichalcogenides MoS2 or WSe2 are gaining in importance as promising channel materials for field-effect transistors (FETs). The presence of a direct bandgap in monolayer MoS2 due to quantum-mechanical confinement allows room-temperature FETs with an on/off ratio exceeding 108. The presence of high- κ dielectrics in these devices enhanced their mobility, but the mechanisms are not well understood. Here, we report on electrical transport measurements on MoS2 FETs in different dielectric configurations. The dependence of mobility on temperature shows clear evidence of the strong suppression of charged-impurity scattering in dual-gate devices with a top-gate dielectric. At the same time, phonon scattering shows a weaker than expected temperature dependence. High levels of doping achieved in dual-gate devices also allow the observation of a metal–insulator transition in monolayer MoS2 due to strong electron–electron interactions. Our work opens up the way to further improvements in 2D semiconductor performance and introduces MoS2 as an interesting system for studying correlation effects in mesoscopic systems.

Journal

Nature MaterialsSpringer Journals

Published: Jun 23, 2013

There are no references for this article.