Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Porta, C. Paglino, M. Amici, S. Quaglini, L. Sacchi, I. Imarisio, C. Canipari (2010)
Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving sunitinib.Kidney international, 77 9
M. Infanger, P. Kossmehl, Mehdi Shakibaei, Mehdi Shakibaei, Sarah Baatout, A. Witzing, J. Grosse, J. Bauer, Augusto Cogoli, S. Faramarzi, H. Derradji, M. Neefs, Martin Paul, D. Grimm (2006)
Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: Impact of vascular endothelial growth factorApoptosis, 11
N. Hoffmann, Y. Sheinin, C. Lohse, A. Parker, B. Leibovich, Zhong Jiang, E. Kwon (2008)
External validation of IMP3 expression as an independent prognostic marker for metastatic progression and death for patients with clear cell renal cell carcinomaCancer, 112
D. Grimm, J. Bauer, J. Pietsch, M. Infanger, J. Eucker, C. Eilles, J. Schoenberger (2011)
Diagnostic and therapeutic use of membrane proteins in cancer cells.Current medicinal chemistry, 18 2
D. Miles, A. Chan, L. Dirix, J. Cortés, X. Pivot, P. Tomczak, T. Delozier, J. Sohn, L. Provencher, F. Puglisi, N. Harbeck, G. Steger, A. Schneeweiss, A. Wardley, A. Chlistalla, G. Romieu (2010)
Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28 20
F. Kabbinavar, H. Hurwitz, L. Fehrenbacher, N. Meropol, W. Novotny, G. Liebérman, S. Griffing, E. Bergsland (2003)
Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 21 1
Suraiya Rasheed, Jasper Yan, Adil Hussain, Bruce Lai (2009)
Proteomic characterization of HIV-modulated membrane receptors, kinases and signaling proteins involved in novel angiogenic pathwaysJournal of Translational Medicine, 7
Niall Tebbutt, K. Wilson, V. Gebski, M. Cummins, D. Zannino, G. Hazel, B. Robinson, A. Broad, V. Ganju, S. Ackland, G. Forgeson, D. Cunningham, Mark Saunders, Martin Stockler, Y. Chua, John Zalcberg, R. Simes, Timothy Price (2010)
Capecitabine, bevacizumab, and mitomycin in first-line treatment of metastatic colorectal cancer: results of the Australasian Gastrointestinal Trials Group Randomized Phase III MAX Study.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28 19
Huasheng Liang, Yu-hua Zhong, Z. Luo, Yu Huang, Huade Lin, S- Zhan, Kai-qing Xie, Q. Li (2011)
Diagnostic value of 16 cellular tumor markers for metastatic thyroid cancer: an immunohistochemical study.Anticancer research, 31 10
M. Atkins, M. Regan, D. McDermott, J. Mier, E. Stanbridge, A. Youmans, P. Febbo, M. Upton, M. Lechpammer, S. Signoretti (2005)
Carbonic Anhydrase IX Expression Predicts Outcome of Interleukin 2 Therapy for Renal CancerClinical Cancer Research, 11
A. Brannon, Anupama Reddy, M. Seiler, Alexandra Arreola, D. Moore, R. Pruthi, E. Wallen, M. Nielsen, Huiqing Liu, K. Nathanson, B. Ljungberg, Hongjuan Zhao, J. Brooks, S. Ganesan, G. Bhanot, W. Rathmell (2010)
Abstract 1996: Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patternsCancer Research, 70
J. Pietsch, Stefan Riwaldt, J. Bauer, A. Sickmann, G. Weber, J. Grosse, M. Infanger, C. Eilles, D. Grimm (2013)
Interaction of Proteins Identified in Human Thyroid CellsInternational Journal of Molecular Sciences, 14
D. Altman, L. McShane, W. Sauerbrei, S. Taube (2012)
Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and ElaborationPLoS Medicine, 9
T. Schneider, R. Abdulrahman, E. Corssmit, H. Morreau, Johannes Smit, E. Kapiteijn (2012)
Long-term analysis of the efficacy and tolerability of sorafenib in advanced radio-iodine refractory differentiated thyroid carcinoma: final results of a phase II trial.European journal of endocrinology, 167 5
F. Arnold, D. West (1991)
Angiogenesis in wound healing.Pharmacology & therapeutics, 52 3
A. Jemal, R. Siegel, Elizabeth Ward, Y. Hao, Jiaquan Xu, M. Thun (2009)
Cancer Statistics, 2009CA: A Cancer Journal for Clinicians, 59
Alessia Bottos, M. Martini, F. Nicolantonio, V. Comunanza, F. Maione, Alberto Minassi, G. Appendino, F. Bussolino, A. Bardelli (2011)
Targeting oncogenic serine/threonine-protein kinase BRAF in cancer cells inhibits angiogenesis and abrogates hypoxiaProceedings of the National Academy of Sciences, 109
C. O’Brien, A. Pollett, S. Gallinger, J. Dick (2007)
A human colon cancer cell capable of initiating tumour growth in immunodeficient miceNature, 445
N. Ferrara (2004)
Vascular endothelial growth factor: basic science and clinical progress.Endocrine reviews, 25 4
H. Hurwitz, P. Douglas, J. Middleton, G. Sledge, David Johnson, D. Reardon, D. Chen, O. Rosen (2010)
Analysis of early hypertension (HTN) and clinical outcome with bevacizumab (BV).Journal of Clinical Oncology, 28
M. Schlumberger, R. Elisei, L. Bastholt, L. Wirth, R. Martins, L. Locati, B. Jarzab, F. Pacini, C. Daumerie, J. Droz, M. Eschenberg, Yu‐Nien Sun, T. Juan, D. Stepan, S. Sherman (2009)
Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 23
J. Spratlin (2011)
Ramucirumab (IMC-1121B): Monoclonal Antibody Inhibition of Vascular Endothelial Growth Factor Receptor-2Current Oncology Reports, 13
H. Tran, Yuan Liu, A. Zurita, Ying Lin, K. Baker-Neblett, Anne-Marie Martin, R. Figlin, Thomas Hutson, C. Sternberg, R. Amado, L. Pandite, J. Heymach (2012)
Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials.The Lancet. Oncology, 13 8
S. Kopetz, P. Hoff, Jeffrey Morris, R. Wolff, C. Eng, K. Glover, R. Adinin, M. Overman, V. Valero, S. Wen, C. Lieu, Shaoyu Yan, H. Tran, L. Ellis, J. Abbruzzese, J. Heymach (2010)
Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28 3
E. Somers (1985)
International Agency for Research on Cancer.CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne, 133 9
R. Roskoski (2007)
Vascular endothelial growth factor (VEGF) signaling in tumor progression.Critical reviews in oncology/hematology, 62 3
D. Lu, X. Jimenez, Haifan Zhang, P. Bőhlen, L. Witte, Zhen-ping Zhu (2002)
Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapyInternational Journal of Cancer, 97
R. Sullivan, C. Graham (2007)
Hypoxia-driven selection of the metastatic phenotypeCancer and Metastasis Reviews, 26
(2008)
Phase II trial of aflibercept (VEGF Trap) in previously treated patients with metastatic colorectal cancer (MCRC): A PMH phase II consortium trialASCO Meet. Abstr, 26
(2011)
Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: A randomized, double-blind, placebo-controlled phase III studyJ. Clin. Oncol, 29
A. Sandler, R. Gray, M. Perry, J. Brahmer, J. Schiller, A. Dowlati, R. Lilenbaum, David Johnson (2006)
Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer.The New England journal of medicine, 355 24
N. Dumont, C. Arteaga (2000)
Transforming growth factor-β and breast cancer: Tumor promoting effects of transforming growth factor-βBreast Cancer Research : BCR, 2
M. Infanger, O. Schmidt, P. Kossmehl, S. Grad, W. Ertel, D. Grimm (2004)
Vascular endothelial growth factor serum level is strongly enhanced after burn injury and correlated with local and general tissue edema.Burns : journal of the International Society for Burn Injuries, 30 4
N. Ferrara, T. Davis-Smyth (1997)
The biology of vascular endothelial growth factor.Endocrine reviews, 18 1
A. Coxon, J. Bready, Steve Kaufman, Juan Estrada, T. Osgood, J. Canon, Ling Wang, R. Radinsky, Rick Kendall, Paul Hughes, A. Polverino (2011)
Anti-tumor activity of motesanib in a medullary thyroid cancer modelJournal of Endocrinological Investigation, 35
E. Lee, K. Chung, H. Min, Tae Kim, Tae Kim, J. Ryu, Yoo Jung, Seok-ki Kim, You Lee (2012)
Preoperative Serum Thyroglobulin as a Useful Predictive Marker to Differentiate Follicular Thyroid Cancer from Benign Nodules in Indeterminate NodulesJournal of Korean Medical Science, 27
F. Kabbinavar, J. Schulz, M. Mccleod, T. Patel, J. Hamm, J. Hecht, R. Mass, B. Perrou, B. Nelson, W. Novotny (2005)
Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 23 16
J. Groot, P. Wen, K. Lamborn, Susan Chang, T. Cloughesy, A. Chen, L. Deangelis, M. Mehta, M. Gilbert, W. Yung, M. Prados (2008)
Phase II single arm trial of aflibercept in patients with recurrent temozolomide-resistant glioblastoma: NABTC 0601Journal of Clinical Oncology, 26
C. Durante, N. Haddy, E. Baudin, S. Leboulleux, D. Hartl, J. Travagli, B. Caillou, M. Ricard, J. Lumbroso, F. Vathaire, M. Schlumberger (2006)
Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy.The Journal of clinical endocrinology and metabolism, 91 8
K. Alitalo, T. Tammela, T. Petrova (2005)
Lymphangiogenesis in development and human diseaseNature, 438
T. Klatte, D. Seligson, S. Riggs, J. Leppert, M. Berkman, Mark Kleid, Hong Yu, F. Kabbinavar, A. Pantuck, A. Belldegrun (2007)
Hypoxia-Inducible Factor 1α in Clear Cell Renal Cell CarcinomaClinical Cancer Research, 13
A. Veldt, K. Eechoute, H. Gelderblom, J. Gietema, H. Guchelaar, N. Erp, A. Eertwegh, J. Haanen, R. Mathijssen, J. Wessels (2010)
Genetic Polymorphisms Associated with a Prolonged Progression-Free Survival in Patients with Metastatic Renal Cell Cancer Treated with SunitinibClinical Cancer Research, 17
N. Ferrara, K. Hillan, H. Gerber, W. Novotny (2004)
Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancerNature Reviews Drug Discovery, 3
Chun-Fang Xu, N. Bing, H. Ball, D. Rajagopalan, C. Sternberg, Thomas Hutson, P. Souza, Z. Xue, L. McCann, K. King, L. Ragone, J. Whittaker, C. Spraggs, L. Cardon, V. Mooser, L. Pandite (2011)
Pazopanib efficacy in renal cell carcinoma: evidence for predictive genetic markers in angiogenesis-related and exposure-related genes.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 29 18
R. Bukowski, T. Eisen, C. Szczylik, W. Stadler, R. Simantov, M. Shan, J. Elting, C. Peña, B. Escudier (2007)
Final results of the randomized phase III trial of sorafenib in advanced renal cell carcinoma: Survival and biomarker analysisJournal of Clinical Oncology, 25
(1997)
Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973-1991
S. Shaik, C. Nucera, H. Inuzuka, Daming Gao, Maija Garnaas, Gregory Frechette, L. Harris, L. Wan, H. Fukushima, Amjad Husain, V. Nosé, G. Fadda, P. Sadow, W. Goessling, T. North, J. Lawler, Wenyi Wei (2012)
SCFβ-TRCP suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2The Journal of Experimental Medicine, 209
R. Thompson, S. Kuntz, B. Leibovich, Haidong Dong, C. Lohse, W. Webster, S. Sengupta, I. Frank, A. Parker, H. Zincke, M. Blute, T. Sebo, J. Cheville, E. Kwon (2006)
Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up.Cancer research, 66 7
(2005)
The biology of vascular endothelial growth factorsCardiovasc. Res, 65
高張 大亮 (2009)
What's going on 進行結腸直腸がんに対してのオキサリプラチンを用いた一次治療におけるベバシズマブの上乗せ効果[Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, Couture F, Sirzen F, Cassidy J 'Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastati, 6
P. Österlund, L. Soveri, H. Isoniemi, T. Poussa, T. Alanko, P. Bono, P. Bono (2011)
Hypertension and overall survival in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapyBritish Journal of Cancer, 104
Dan Huang, Yan Ding, Ming Zhou, B. Rini, D. Petillo, C. Qian, R. Kahnoski, P. Futreal, K. Furge, B. Teh (2010)
Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma.Cancer research, 70 3
D. Lambrechts, H. Lenz, Sanne Haas, P. Carmeliet, S. Scherer (2013)
Markers of response for the antiangiogenic agent bevacizumab.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 31 9
V. Marotta, V. Ramundo, L. Camera, M. Prete, R. Fonti, R. Esposito, G. Palmieri, M. Salvatore, M. Vitale, A. Colao, A. Faggiano (2013)
Sorafenib in advanced iodine‐refractory differentiated thyroid cancer: efficacy, safety and exploratory analysis of role of serum thyroglobulin and FDG‐PETClinical Endocrinology, 78
Maria Pavlou, E. Diamandis (2010)
The cancer cell secretome: a good source for discovering biomarkers?Journal of proteomics, 73 10
S. Wells, J. Gosnell, R. Gagel, J. Moley, D. Pfister, J. Sosa, M. Skinner, A. Krebs, J. Vasselli, M. Schlumberger (2010)
Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28 5
F. Pépin, N. Bertos, Julie Laferrière, S. Sadekova, Margarita Souleimanova, Hong Zhao, Greg Finak, S. Meterissian, M. Hallett, Morag Park (2012)
Gene-expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypesBreast Cancer Research : BCR, 14
J. Schoenberger, D. Grimm, P. Kossmehl, M. Infanger, E. Kurth, C. Eilles (2004)
Effects of PTK787/ZK222584, a tyrosine kinase inhibitor, on the growth of a poorly differentiated thyroid carcinoma: an animal study.Endocrinology, 145 3
J. Ferlay, P. Autier, M. Boniol, M. Heanue, M. Colombet, P. Boyle (2006)
Estimates of the cancer incidence and mortality in Europe in 2006.Annals of oncology : official journal of the European Society for Medical Oncology, 18 3
K. Ain, Charles Lee, K. Williams (2007)
Phase II trial of thalidomide for therapy of radioiodine-unresponsive and rapidly progressive thyroid carcinomas.Thyroid : official journal of the American Thyroid Association, 17 7
J. Folkman (1995)
Angiogenesis in cancer, vascular, rheumatoid and other diseaseNature Medicine, 1
H. Gerber, Amy McMurtrey, J. Kowalski, Minhong Yan, B. Keyt, V. Dixit, N. Ferrara (1998)
Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3′-Kinase/Akt Signal Transduction PathwayThe Journal of Biological Chemistry, 273
M. Zerey, B. Heniford (2007)
Gastrointestinal Stromal TumorsSurgical Innovation, 14
V. Gruttola, Pamela Clax, D. DeMets, Gregory Downing, S. Ellenberg, Lawrence Friedman, Mitchell Gail, Ross Prentice, Janet Wittes, S. Zeger (2001)
Considerations in the evaluation of surrogate endpoints in clinical trials. summary of a National Institutes of Health workshop.Controlled clinical trials, 22 5
F. Cognetti, S. Gori, V. Adamo, A. Molino, G. Benedetti, A. Gardini, S. Gildetti, F. Riccardi, S. Rossi, L. Mastro (2010)
NEMESI: A retrospective observational longitudinal study to investigate italian early breast cancer (EBC) patient characteristics and treatment.Journal of Clinical Oncology, 28
M. Shibuya, S. Yamaguchi, A. Yamane, T. Ikeda, A. Tojo, H. Matsushime, Misako Sato (1990)
Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family.Oncogene, 5 4
(2007)
Circulating protein biomarkers of pharmacodynamic activity of Sunitinib in patients with metastatic renal cell carcinoma, Modulation of VEGF and VEGF-related proteinsJ. Transl. Med, 5
J. Pietsch, Richard Kussian, A. Sickmann, J. Bauer, G. Weber, M. Nissum, Kriss Westphal, M. Egli, J. Grosse, J. Schönberger, R. Wildgruber, M. Infanger, D. Grimm (2010)
Application of free‐flow IEF to identify protein candidates changing under microgravity conditionsPROTEOMICS, 10
T. Hansen, R. Christensen, R. Andersen, K. Spindler, A. Johnsson, A. Jakobsen (2012)
The predictive value of single nucleotide polymorphisms in the VEGF system to the efficacy of first-line treatment with bevacizumab plus chemotherapy in patients with metastatic colorectal cancerInternational Journal of Colorectal Disease, 27
H. Kindler, D. Niedzwiecki, D. Hollis, S. Sutherland, D. Schrag, H. Hurwitz, F. Innocenti, M. Mulcahy, E. O’Reilly, T. Wozniak, J. Picus, P. Bhargava, R. Mayer, R. Schilsky, R. Goldberg (2010)
Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303).Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28 22
Lars KjeldsenS, A. Johnsen, Henrik Sengelbv, Niels Borregaardll (1993)
Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase.The Journal of biological chemistry, 268 14
K. Paavonen, P. Puolakkainen, L. Jussila, T. Jahkola, K. Alitalo (2000)
Short Communication Vascular Endothelial Growth Factor Receptor-3 in Lymphangiogenesis in Wound Healing
Shane Herbert, D. Stainier (2011)
Molecular control of endothelial cell behaviour during blood vessel morphogenesisNature Reviews Molecular Cell Biology, 12
S. Matsusaka, M. Suenaga, Y. Mishima, K. Takagi, Y. Terui, N. Mizunuma, K. Hatake (2011)
Circulating endothelial cells predict for response to bevacizumab-based chemotherapy in metastatic colorectal cancerCancer Chemotherapy and Pharmacology, 68
K. Miller, Molin Wang, J. Gralow, M. Dickler, M. Cobleigh, E. Perez, T. Shenkier, D. Cella, N. Davidson (2007)
Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer.The New England journal of medicine, 357 26
R. Valtola, P. Salvén, P. Heikkilä, J. Taipale, H. Joensuu, M. Rehn, T. Pihlajaniemi, H. Weich, Robert deWaal, K. Alitalo (1999)
VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer.The American journal of pathology, 154 5
M. Holderfield, C. Hughes (2008)
Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis.Circulation research, 102 6
A. Zhu (2008)
Development of sorafenib and other molecularly targeted agents in hepatocellular carcinomaCancer, 112
P. Carmeliet, Y. Ng, D. Nuyens, G. Theilmeier, K. Brusselmans, I. Cornelissen, E. Ehler, V. Kakkar, I. Stalmans, V. Mattot, J. Perriard, M. Dewerchin, W. Flameng, A. Nagy, F. Lupu, L. Moons, D. Collen, P. D’Amore, D. Shima (1999)
Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188Nature Medicine, 5
P. Twardowski, W. Stadler, P. Frankel, P. Lara, C. Ruel, G. Chatta, E. Heath, D. Quinn, D. Gandara (2009)
Phase II study of aflibercept (VEGF-Trap) in patients (pts) with recurrent or metastatic transitional cell carcinoma (TCC) of the urothelium: A California Cancer Consortium trial.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 15_suppl
P. Tang, S. Cohen, G. Bjarnason, C. Kollmannsberger, K. Virik, M. Mackenzie, J. Brown, Lisa Wang, A. Chen, M. Moore (2008)
Phase II trial of aflibercept (VEGF Trap) in previously treated patients with metastatic colorectal cancer (MCRC): A PMH phase II consortium trialJournal of Clinical Oncology, 26
J. Baar, P. Silverman, J. Lyons, P. Fu, F. Abdul-Karim, N. Ziats, J. Wasman, P. Hartman, J. Jesberger, L. Dumadag, Erin Hohler, R. Leeming, R. Shenk, Helen Chen, K. McCrae, A. Dowlati, S. Remick, B. Overmoyer (2009)
A Vasculature-Targeting Regimen of Preoperative Docetaxel with or without Bevacizumab for Locally Advanced Breast Cancer: Impact on Angiogenic BiomarkersClinical Cancer Research, 15
(2006)
Statistics Subcommittee of NCI-EORTC Working Group on Cancer Diagnostics. Reporting recommendations for tumor MARKer prognostic studies (REMARK)Breast Cancer Res. Treat, 100
M. Kowanetz, N. Ferrara (2006)
Vascular Endothelial Growth Factor Signaling Pathways: Therapeutic PerspectiveClinical Cancer Research, 12
M. Infanger, M. Shakibaei, P. Kossmehl, Siri Hollenberg, J. Grosse, S. Faramarzi, G. Schulze-Tanzil, M. Paul, D. Grimm (2005)
Intraluminal Application of Vascular Endothelial Growth Factor Enhances Healing of Microvascular Anastomosis in a Rat ModelJournal of Vascular Research, 42
(2000)
J. Mol. Med
(2009)
A phase II study of aflibercept (VEGF trap) in recurrent or metastatic gynecologic soft-tissue sarcomas: A study of the Princess Margaret Hospital Phase II ConsortiumASCO Meet. Abstr, 27
M. Cabanillas, S. Waguespack, Y. Bronstein, M. Williams, Lei Feng, Mike Hernandez, Adriana López, S. Sherman, N. Busaidy (2010)
Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience.The Journal of clinical endocrinology and metabolism, 95 6
E. Cutsem, W. Vervenne, J. Bennouna, Y. Humblet, S. Gill, J. Laethem, C. Verslype, W. Scheithauer, A. Shang, J. Cosaert, M. Moore (2009)
Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 13
D. Grimm, Petra Wise, M. Lebert, Peter Richter, S. Baatout (2011)
How and why does the proteome respond to microgravity?Expert Review of Proteomics, 8
Hiroyuki Takahashi, M. Shibuya (2005)
The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions.Clinical science, 109 3
K. Miller, L. Chap, F. Holmes, M. Cobleigh, P. Marcom, L. Fehrenbacher, M. Dickler, B. Overmoyer, J. Reimann, A. Sing, V. Langmuir, H. Rugo (2005)
Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 23 4
(2010)
V600E) mutation influences hypoxia-inducible factor-1alpha expression levels in papillary thyroid cancer
N. Robert, V. Diéras, J. Glaspy, A. Brufsky, I. Bondarenko, O. Lipatov, E. Perez, D. Yardley, S. Chan, Xian Zhou, S. Phan, J. O’Shaughnessy (2011)
RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 29 10
M. Infanger, S. Faramarzi, J. Grosse, E. Kurth, C. Ulbrich, J. Bauer, M. Wehland, R. Kreutz, P. Kossmehl, M. Paul, D. Grimm (2007)
Expression of vascular endothelial growth factor and receptor tyrosine kinases in cardiac ischemia/reperfusion injury.Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology, 16 5
A. Brufsky, S. Hurvitz, E. Perez, R. Swamy, V. Valero, V. O'Neill, H. Rugo (2011)
RIBBON-2: a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 29 32
A. Jubb, H. Hurwitz, W. Bai, E. Holmgren, P. Tobin, A. Guerrero, F. Kabbinavar, S. Holden, W. Novotny, G. Frantz, K. Hillan, H. Koeppen (2006)
Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 24 2
(2009)
Phase II study of aflibercept (VEGFTrap) in patients with recurrent or metastatic transitional cell carcinoma (TCC) of the urothelium: A California Cancer Consortium trialASCO Meet. Abstr, 27
M. Karkkainen, Taija Mäkinen, K. Alitalo (2002)
Lymphatic endothelium: a new frontier of metastasis researchNature Cell Biology, 4
(2004)
Randomized phase II trial comparing Bevacizumab plus Carboplatin and Paclitaxel with Carboplatin and Paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancerJ. Clin. Oncol, 22
(2008)
Phase II single arm trial of aflibercept in patients with recurrent temozolomide-resistant glioblastoma: NABTC 0601ASCO Meet. Abstr, 26
C. Gennigens, G. Jerusalem (2012)
[Pazopanib (Votrient) in the management of renal cell cancer and soft tissue sarcomas].Revue medicale de Liege, 67 7-8
L. Wood (2012)
Sunitinib malate for the treatment of renal cell carcinomaExpert Opinion on Pharmacotherapy, 13
A. Olsson, A. Dimberg, J. Kreuger, L. Claesson-Welsh (2006)
VEGF receptor signalling ? in control of vascular functionNature Reviews Molecular Cell Biology, 7
J. Ruohola, E. Valve, M. Karkkainen, V. Joukov, K. Alitalo, P. Härkönen (1999)
Vascular endothelial growth factors are differentially regulated by steroid hormones and antiestrogens in breast cancer cellsMolecular and Cellular Endocrinology, 149
A. Tarhini, S. Christensen, P. Frankel, K. Margolin, C. Ruel, J. Shipe-Spotloe, M. Demark, J. Kirkwood (2009)
Phase II study of aflibercept (VEGF trap) in recurrent inoperable stage III or stage IV melanoma of cutaneous or ocular origin.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 15_suppl
L. Reynolds, D. Redmer (2001)
Angiogenesis in the placenta.Biology of reproduction, 64 4
T. Tammela, G. Zarkada, H. Nurmi, Lars Jakobsson, K. Heinolainen, D. Tvorogov, Wei Zheng, C. Franco, Aino Murtomäki, Evelyn Aranda, N. Miura, S. Ylä-Herttuala, M. Fruttiger, Taija Mäkinen, A. Eichmann, J. Pollard, H. Gerhardt, K. Alitalo (2011)
VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signallingNature Cell Biology, 13
T. Alon, I. Hemo, A. Itin, J. Pe’er, J. Stone, E. Keshet (1995)
Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurityNature Medicine, 1
for Diagnostics (2005)
REporting recommendations for tumor MARKer prognostic studies (REMARK)Nature Clinical Practice Oncology, 2
P. Patel, Rajendrakumar Chadalavada, N. Ishill, S. Patil, V. Reuter, R. Motzer, R. Chaganti (2008)
Hypoxia-inducible factor (HIF) 1{alpha} and 2{alpha} levels in cell lines and human tumor predicts response to sunitinib in renal cell carcinoma (RCC)Journal of Clinical Oncology, 26
R. Kloos, M. Ringel, M. Knopp, N. Hall, M. King, R. Stevens, Jiachao Liang, P. Wakely, V. Vasko, M. Saji, J. Rittenberry, Lai Wei, D. Arbogast, Minden Collamore, J. Wright, M. Grever, M. Shah (2009)
Phase II trial of sorafenib in metastatic thyroid cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 10
A. Calleri, Anna Bono, V. Bagnardi, J. Quarna, P. Mancuso, C. Rabascio, S. Dellapasqua, E. Campagnoli, Y. Shaked, A. Goldhirsch, M. Colleoni, F. Bertolini (2009)
Predictive Potential of Angiogenic Growth Factors and Circulating Endothelial Cells in Breast Cancer Patients Receiving Metronomic Chemotherapy Plus BevacizumabClinical Cancer Research, 15
H. Burstein, A. Elias, H. Rugo, M. Cobleigh, A. Wolff, P. Eisenberg, M. Lehman, B. Adams, C. Bello, S. Deprimo, C. Baum, K. Miller (2008)
Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 26 11
H. Hurwitz, P. Douglas, J. Middleton, G. Sledge, David Johnson, D. Reardon, Dafeng Chen, O. Rosen (2013)
Analysis of early hypertension and clinical outcome with bevacizumab: results from seven phase III studies.The oncologist, 18 3
Valentin Goede, Oliver Coutelle, J. Neuneier, A. Reinacher-Schick, R. Schnell, T. Koslowsky, M. Weihrauch, Birgit Cremer, H. Kashkar, Margarete Odenthal, H. Augustin, W. Schmiegel, M. Hallek, Ulrich Hacker (2010)
Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapyBritish Journal of Cancer, 103
Laura Benjamin, D. Golijanin, A. Itin, D. Pode, E. Keshet (1999)
Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal.The Journal of clinical investigation, 103 2
Xifeng Wu, G. Scelo, M. Purdue, N. Rothman, M. Johansson, Y. Ye, Zhaoming Wang, D. Zélénika, L. Moore, C. Wood, E. Prokhortchouk, V. Gaborieau, K. Jacobs, W. Chow, J. Toro, D. Zaridze, Jie Lin, J. Lubiński, J. Trubicka, N. szeszenia-Dabrowska, J. Lissowska, P. Rudnai, E. Fabiánová, D. Mates, V. Jinga, V. Bencko, A. Slámová, I. Holcatova, M. Navratilova, V. Janout, P. Boffetta, J. Colt, F. Davis, K. Schwartz, R. Banks, P. Selby, P. Harnden, C. Berg, A. Hsing, R. Grubb, H. Boeing, P. Vineis, P. Vineis, F. Clavel-Chapelon, F. Clavel-Chapelon, D. Palli, R. Tumino, V. Krogh, S. Panico, E. Duell, J. Quirós, M. Sánchez, M. Sánchez, C. Navarro, E. Ardanaz, M. Dorronsoro, K. Khaw, N. Allen, H. Bueno-de-Mesquita, P. Peeters, D. Trichopoulos, D. Trichopoulos, J. Linseisen, B. Ljungberg, K. Overvad, A. Tjønneland, I. Romieu, E. Riboli, V. Stevens, M. Thun, W. Diver, S. Gapstur, P. Pharoah, D. Easton, D. Albanes, J. Virtamo, L. Vatten, K. Hveem, T. Fletcher, K. Koppová, O. Cussenot, G. Cancel-Tassin, S. Benhamou, S. Benhamou, M. Hildebrandt, X. Pu, M. Foglio, D. Lechner, A. Hutchinson, M. Yeager, J. Fraumeni, M. Lathrop, K. Skryabin, J. Mckay, J. Gu, P. Brennan, S. Chanock (2012)
A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23.Human molecular genetics, 21 2
W. Tew, N. Colombo, I. Ray-Coquard, A. Oza, J. Campo, G. Scambia, D. Spriggs (2007)
VEGF-Trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): Preliminary results of a randomized, multicenter phase II studyJournal of Clinical Oncology, 25
N. Ferrara, H. Gerber, J. Lecouter (2003)
The biology of VEGF and its receptorsNature Medicine, 9
B. Terman, M. Carrion, E. Kovács, Rasmussen Ba, Eddy Rl, T. Shows (1991)
Identification of a new endothelial cell growth factor receptor tyrosine kinase.Oncogene, 6 9
J. Folkman (1971)
Tumor angiogenesis: therapeutic implications.The New England journal of medicine, 285 21
A. Zurita, E. Jonasch, Xin Wang, M. Khajavi, Shaoyu Yan, D. Du, Li Xu, M. Herynk, K. Mckee, H. Tran, C. Logothetis, N. Tannir, J. Heymach (2012)
A cytokine and angiogenic factor (CAF) analysis in plasma for selection of sorafenib therapy in patients with metastatic renal cell carcinoma.Annals of oncology : official journal of the European Society for Medical Oncology, 23 1
L. Ricci-Vitiani, D. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. Maria (2007)
Identification and expansion of human colon-cancer-initiating cellsNature, 445
G. Semenza (2002)
Signal transduction to hypoxia-inducible factor 1.Biochemical pharmacology, 64 5-6
R. Webb, R. Howard, A. Stojadinovic, D. Gaitonde, M. Wallace, Jehanara Ahmed, H. Burch (2012)
The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: a meta-analysis involving 3947 patients.The Journal of clinical endocrinology and metabolism, 97 8
M. Infanger, J. Grosse, Kriss Westphal, Annekatrin Leder, C. Ulbrich, M. Paul, D. Grimm (2008)
Vascular endothelial growth factor induces extracellular matrix proteins and osteopontin in the umbilical artery.Annals of vascular surgery, 22 2
(2009)
RIBBON-1, randomized, double blind, placebo controlled phase III trial of chemotherapy with or without Bevacizumab for first line treatment of HER2 negative locally recurrent or metastatic breast cancerASCO Present. J. Clin. Oncol, 27
M. Ronzoni, M. Manzoni, S. Mariucci, F. Loupakis, S. Brugnatelli, K. Bencardino, B. Rovati, C. Tinelli, A. Falcone, E. Villa, M. Danova (2010)
Circulating endothelial cells and endothelial progenitors as predictive markers of clinical response to bevacizumab-based first-line treatment in advanced colorectal cancer patients.Annals of oncology : official journal of the European Society for Medical Oncology, 21 12
H. Singh, A. Pohl, A. El-Khoueiry, G. Lurje, Wu Zhang, D. Yang, Y. Ning, J. Shriki, S. Iqbal, H. Lenz (2009)
Use of genetic variants to predict clinical outcome in patients (pts) with metastatic colorectal cancer (mCRC) treated with first-line 5-FU or capecitabine in combination with oxaliplatin and bevacizumab (FOLFOX/BV or XELOX/BV).Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 15_suppl
M. Reck, J. Pawel, P. Zatloukal, R. Ramlau, V. Gorbounova, V. Hirsh, N. Leighl, J. Mezger, V. Archer, N. Moore, C. Manegold (2010)
Overall survival with cisplatin–gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL)Annals of Oncology, 21
(2000)
Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healingAm. J. Pathol, 156
J. García-Donas, E. Esteban, L. Leandro-García, D. Castellano, A. Alba, M. Climent, J. Arranz, E. Gallardo, J. Puente, J. Bellmunt, B. Mellado, E. Martínez, F. Moreno, A. Font, M. Robledo, C. Rodríguez‐Antona (2011)
Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study.The Lancet. Oncology, 12 12
Kevin Kim, J. Sosman, J. Fruehauf, G. Linette, S. Markovic, D. McDermott, J. Weber, Hoa Nguyen, P. Cheverton, Daniel Chen, A. Peterson, W. Carson, S. O'Day (2012)
BEAM: a randomized phase II study evaluating the activity of bevacizumab in combination with carboplatin plus paclitaxel in patients with previously untreated advanced melanoma.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 30 1
H. Roy, S. Bhardwaj, S. Ylä-Herttuala (2006)
Biology of vascular endothelial growth factorsFEBS Letters, 580
J. Pietsch, A. Sickmann, G. Weber, J. Bauer, M. Egli, R. Wildgruber, M. Infanger, D. Grimm (2011)
A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machinePROTEOMICS, 11
M. Wehland, J. Bauer, M. Infanger, D. Grimm (2012)
Target-based anti-angiogenic therapy in breast cancer.Current pharmaceutical design, 18 27
A. Jubb, A. Harris (2010)
Biomarkers to predict the clinical efficacy of bevacizumab in cancer.The Lancet. Oncology, 11 12
D. Grimm, J. Bauer, C. Ulbrich, Kriss Westphal, M. Wehland, M. Infanger, G. Aleshcheva, J. Pietsch, M. Ghardi, Michaël Beck, Houssein el-Saghire, L. Saint-Georges, S. Baatout (2010)
Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity.Tissue engineering. Part A, 16 5
H. Gerber, V. Dixit, N. Ferrara (1998)
Vascular Endothelial Growth Factor Induces Expression of the Antiapoptotic Proteins Bcl-2 and A1 in Vascular Endothelial Cells*The Journal of Biological Chemistry, 273
J. Schönberger, J. Bauer, T. Spruss, G. Weber, I. Chahoud, C. Eilles, D. Grimm (2000)
Establishment and characterization of the follicular thyroid carcinoma cell line ML-1Journal of Molecular Medicine, 78
A. Carpi, J. Mechanick, S. Saussez, A. Nicolini (2010)
Thyroid tumor marker genomics and proteomics: Diagnostic and clinical implicationsJournal of Cellular Physiology, 224
C. Oldenhuis, S. Oosting, J. Gietema, D. Vries (2008)
Prognostic versus predictive value of biomarkers in oncology.European journal of cancer, 44 7
A. Pohl, Wu Zhang, D. Yang, G. Lurje, Y. Ning, S. Khambata-Ford, Christiane Langer, Michael Kahn, J. Teo, H. Lenz (2009)
Association of CD133 polymorphisms and clinical outcome in metastatic colorectal cancer (mCRC) patients (pts) treated with either first-line 5-FU + bevacizumab (BV) or second-line irinotecan (IR)/cetuximab (CB) or IR alone.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 15_suppl
B. Rini, S. Halabi, J. Rosenberg, W. Stadler, D. Vaena, L. Archer, J. Atkins, J. Picus, P. Czaykowski, J. Dutcher, E. Small (2010)
Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28 13
J. Grosse, M. Wehland, J. Pietsch, H. Schulz, K. Saar, N. Hübner, Christoph Elles, J. Bauer, K. Abou-El-Ardat, S. Baatout, Xiao Ma, M. Infanger, R. Hemmersbach, D. Grimm (2012)
Gravity‐sensitive signaling drives 3‐dimensional formation of multicellular thyroid cancer spheroidsThe FASEB Journal, 26
N. Robert, V. Diéras, J. Glaspy, A. Brufsky, I. Bondarenko, O. Lipatov, E. Perez, D. Yardley, X. Zhou, S. Phan (2009)
RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab (B) for first-line treatment of HER2-negative locally recurrent or metastatic breast cancer (MBC).Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 15_suppl
M. Scartozzi, E. Galizia, S. Chiorrini, R. Giampieri, R. Berardi, C. Pierantoni, S. Cascinu (2009)
Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab.Annals of oncology : official journal of the European Society for Medical Oncology, 20 2
A. Darnell, E. Dalmau, C. Pericay, E. Musulen, J. Martin, J. Puig, A. Malet, E. Saigí, M. Rey (2006)
Gastrointestinal stromal tumorsAbdominal Imaging, 31
(2008)
Cancer Incidence and Mortality Worldwide, IARC CancerBase No
E. Chiorean (2012)
Bevacizumab in Combination With Chemotherapy As First-Line Therapy in Advanced Gastric Cancer: A Randomized, Double-Blind, Placebo-Controlled Phase III StudyYearbook of Oncology, 2012
B. Schneider, Molin Wang, M. Radovich, G. Sledge, S. Badve, A. Thor, D. Flockhart, B. Hancock, N. Davidson, J. Gralow, M. Dickler, E. Perez, M. Cobleigh, T. Shenkier, S. Edgerton, K. Miller (2008)
Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 26 28
(2007)
Phase II study of the efficacy and safety of intravenous (IV) AVE0005 (VEGF Trap) given every 2 weeks in patients (Pts) with platinum- and erlotinib-resistant adenocarcinoma of the lung (NSCLA)ASCO Meet. Abstr, 25
G. Scagliotti, I. Vynnychenko, Keunchil Park, Y. Ichinose, K. Kubota, F. Blackhall, R. Pirker, R. Galiulin, T. Ciuleanu, O. Sydorenko, M. Dediu, Z. Pápai-Székely, N. Banaclocha, S. McCoy, B. Yao, Y. Hei, F. Galimi, D. Spigel (2012)
International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 30 23
E. Massarelli, V. Miller, N. Leighl, P. Rosen, K. Albain, L. Hart, O. Melnyk, L. Sternås, J. Ackerman, R. Herbst (2007)
Phase II study of the efficacy and safety of intravenous (IV) AVE0005 (VEGF Trap) given every 2 weeks in patients (Pts) with platinum- and erlotinib- resistant adenocarcinoma of the lung (NSCLA)Journal of Clinical Oncology, 25
William Ince, A. Jubb, S. Holden, E. Holmgren, P. Tobin, Meera Sridhar, H. Hurwitz, F. Kabbinavar, W. Novotny, K. Hillan, H. Koeppen (2005)
Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab.Journal of the National Cancer Institute, 97 13
B. Escudier, T. Eisen, W. Stadler, C. Szczylik, S. Oudard, M. Staehler, S. Négrier, C. Chevreau, A. Desai, F. Rolland, T. Demkow, Thomas Hutson, M. Gore, S. Anderson, G. Hofilena, M. Shan, C. Peña, C. Lathia, R. Bukowski (2009)
Sorafenib for treatment of renal cell carcinoma: Final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 20
S. Broutin, Nabahet Ameur, L. Lacroix, T. Robert, B. Petit, Nassima Oumata, M. Talbot, B. Caillou, M. Schlumberger, C. Dupuy, J. Bidart (2011)
Identification of Soluble Candidate Biomarkers of Therapeutic Response to Sunitinib in Medullary Thyroid Carcinoma in Preclinical ModelsClinical Cancer Research, 17
W. Kelly, S. Halabi, M. Carducci, D. George, J. Mahoney, W. Stadler, M. Morris, P. Kantoff, J. Monk, E. Kaplan, N. Vogelzang, E. Small (2012)
Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 30 13
(2008)
Bevacizumab in combination with oxaliplatin based chemotherapy as first line therapy in metastatic colorectal cancer: A randomized phase III studyJ. Clin. Oncol, 26
M. Manzoni, S. Mariucci, S. Delfanti, B. Rovati, M. Ronzoni, F. Loupakis, S. Brugnatelli, C. Tinelli, E. Villa, A. Falcone, M. Danova (2012)
Circulating endothelial cells and their apoptotic fraction are mutually independent predictive biomarkers in Bevacizumab-based treatment for advanced colorectal cancerJournal of Cancer Research and Clinical Oncology, 138
A. Antonelli, P. Fallahi, S. Ferrari, I. Ruffilli, F. Santini, M. Minuto, D. Galleri, P. Miccoli (2011)
New Targeted Therapies for Thyroid CancerCurrent Genomics, 12
A. Stefano, C. Carlomagno, S. Pepe, R. Bianco, S. Placido (2011)
Bevacizumab-related arterial hypertension as a predictive marker in metastatic colorectal cancer patientsCancer Chemotherapy and Pharmacology, 68
R. Herbst, V. O'Neill, L. Fehrenbacher, C. Belani, P. Bonomi, L. Hart, O. Melnyk, D. Ramies, Ming Lin, A. Sandler (2007)
Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 25 30
M. Said (2011)
Thyroid Tumor Marker Genomics and Proteomics: Diagnostic and Clinical ImplicationsYearbook of Pathology and Laboratory Medicine, 2011
D. Grimm, M. Infanger, Kriss Westphal, C. Ulbrich, J. Pietsch, P. Kossmehl, S. Vadrucci, S. Baatout, B. Flick, M. Paul, J. Bauer (2009)
A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness.Tissue engineering. Part A, 15 8
S. Matsusaka, Y. Mishima, M. Suenaga, Y. Terui, R. Kuniyoshi, N. Mizunuma, K. Hatake (2011)
Circulating endothelial progenitors and CXCR4‐positive circulating endothelial cells are predictive markers for bevacizumabCancer, 117
Y. Dor, R. Porat, E. Keshet (2001)
Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis.American journal of physiology. Cell physiology, 280 6
J. Pietsch, J. Bauer, Marcel Egli, M. Infanger, Petra Wise, C. Ulbrich, D. Grimm (2011)
The effects of weightlessness on the human organism and mammalian cells.Current molecular medicine, 11 5
A. Pantuck, Z. Fang, Xueli Liu, D. Seligson, S. Horvath, J. Leppert, A. Belldegrun, R. Figlin (2005)
Gene expression and tissue microarray analysis of interleukin-2 complete responders in patients with metastatic renal cell carcinomaJournal of Clinical Oncology, 23
C. Townsley, H. Hirte, P. Hoskins, R. Buckanovich, H. Mackay, S. Welch, L. Wang, R. Polintan, A. Chen, A. Oza (2009)
A phase II study of aflibercept (VEGF trap) in recurrent or metastatic gynecologic soft-tissue sarcomas: A study of the Princess Margaret Hospital Phase II Consortium.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 27 15_suppl
(2007)
VEGF-Trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC), preliminary results of a randomized, multicenter phase II studyASCO Meet. Abstr, 25
M. Persico (2001)
Placenta Growth Factor
B. Escudier, A. Płużańska, P. Koralewski, A. Ravaud, S. Bracarda, C. Szczylik, C. Chevreau, Marek Filipek, B. Melichar, E. Bajetta, V. Gorbunova, J. Bay, I. Bodrogi, A. Jagiełło-Gruszfeld, N. Moore (2007)
Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trialThe Lancet, 370
J. Park, H. Chen, J. Winer, K. Houck, N. Ferrara (1994)
Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR.The Journal of biological chemistry, 269 41
Benedetto Busnardo, D. Vido (2000)
The epidemiology and etiology of differentiated thyroid carcinoma.Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 54 6
Sachie Hiratsuka, O. Minowa, J. Kuno, T. Noda, M. Shibuya (1998)
Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice.Proceedings of the National Academy of Sciences of the United States of America, 95 16
E. Cohen, L. Rosen, E. Vokes, M. Kies, A. Forastiere, F. Worden, M. Kane, E. Sherman, S. Kim, P. Bycott, M. Tortorici, D. Shalinsky, Katherine Liau, R. Cohen (2008)
Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 26 29
O. Straume, P. Chappuis, H. Salvesen, O. Halvorsen, S. Haukaas, J. Goffin, L. Bégin, W. Foulkes, L. Akslen (2002)
Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers.Cancer research, 62 23
(2010)
Phase III trial of Bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: Final results of CALGB 90206J. Clin. Oncol, 28
S. Niedżwiecki, T. Stępień, Krzysztof Kopeć, K. Kuzdak, J. Komorowski, R. Krupiński, H. Stępień (2006)
Angiopoietin 1 (Ang-1), angiopoietin 2 (Ang-2) and Tie-2 (a receptor tyrosine kinase) concentrations in peripheral blood of patients with thyroid cancers.Cytokine, 36 5-6
D. Hanahan, J. Folkman (1996)
Patterns and Emerging Mechanisms of the Angiogenic Switch during TumorigenesisCell, 86
J. Ferlay, Hai-rim Shin, F. Bray, D. Forman, C. Mathers, D. Parkin (2010)
Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008International Journal of Cancer, 127
G. Fountzilas, H. Kourea, Mattheos Bobos, D. Televantou, V. Kotoula, C. Papadimitriou, K. Papazisis, E. Timotheadou, I. Efstratiou, A. Koutras, G. Pentheroudakis, C. Christodoulou, G. Aravantinos, D. Miliaras, K. Petraki, C. Papandreou, P. Papakostas, D. Bafaloukos, D. Repana, E. Razis, D. Pectasides, A. Dimopoulos (2011)
Paclitaxel and bevacizumab as first line combined treatment in patients with metastatic breast cancer: the Hellenic Cooperative Oncology Group experience with biological marker evaluation.Anticancer research, 31 9
(2009)
Phase II study of aflibercept (VEGF trap) in recurrent inoperable stage III or stage IV melanoma of cutaneous or ocular originASCO Meet. Abstr, 27
(2010)
Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patternsGenes Cancer, 1
J. Yim, Eui Kim, Won Kim, Won Kim, Tae Kim, J. Ryu, G. Gong, S. Hong, J. Yoon, Y. Shong (2013)
Long-term consequence of elevated thyroglobulin in differentiated thyroid cancer.Thyroid : official journal of the American Thyroid Association, 23 1
N. Pennell, G. Daniels, R. Haddad, D. Ross, T. Evans, L. Wirth, P. Fidias, J. Temel, S. Gurubhagavatula, R. Heist, J. Clark, T. Lynch (2008)
A phase II study of gefitinib in patients with advanced thyroid cancer.Thyroid : official journal of the American Thyroid Association, 18 3
J. Pietsch, A. Sickmann, G. Weber, J. Bauer, M. Egli, R. Wildgruber, M. Infanger, D. Grimm (2012)
Metabolic enzyme diversity in different human thyroid cell lines and their sensitivity to gravitational forcesPROTEOMICS, 12
G. Bergers, D. Hanahan (2008)
Modes of resistance to anti-angiogenic therapyNature Reviews Cancer, 8
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license
(2006)
Molecular markers of prostate cancerUrol. Oncol, 24
M. Skobe, P. Rockwell, N. Goldstein, Silvia Vosseler, N. Fusenig (1997)
Halting angiogenesis suppresses carcinoma cell invasionNature Medicine, 3
M. Bass, S. Sherman, M. Schlumberger, Michael Davis, Lisa Kivman, H. Khoo, K. Notari, M. Peach, Y. Hei, S. Patterson (2010)
Biomarkers as predictors of response to treatment with motesanib in patients with progressive advanced thyroid cancer.The Journal of clinical endocrinology and metabolism, 95 11
B. Cetin, M. Kaplan, V. Berk, S. Ozturk, M. Benekli, A. Işıkdoğan, M. Ozkan, U. Coşkun, S. Buyukberber (2012)
Prognostic factors for overall survival in patients with metastatic colorectal carcinoma treated with vascular endothelial growth factor-targeting agents.Asian Pacific journal of cancer prevention : APJCP, 13 3
M. Purdue, M. Johansson, D. Zélénika, J. Toro, G. Scelo, L. Moore, E. Prokhortchouk, Xifeng Wu, L. Kiemeney, V. Gaborieau, K. Jacobs, W. Chow, D. Zaridze, V. Matveev, J. Lubiński, J. Trubicka, N. Szeszenia‐Da̧browska, J. Lissowska, P. Rudnai, E. Fabiánová, A. Bucur, V. Bencko, L. Foretova, V. Janout, P. Boffetta, J. Colt, F. Davis, K. Schwartz, R. Banks, P. Selby, P. Harnden, C. Berg, A. Hsing, R. Grubb, H. Boeing, P. Vineis, F. Clavel-Chapelon, D. Palli, R. Tumino, V. Krogh, S. Panico, E. Duell, J. Quirós, María-José Sánchez, C. Navarro, E. Ardanaz, M. Dorronsoro, K. Khaw, N. Allen, H. Bueno-de-Mesquita, P. Peeters, D. Trichopoulos, J. Linseisen, B. Ljungberg, K. Overvad, A. Tjønneland, I. Romieu, E. Riboli, A. Mukeria, O. Shangina, V. Stevens, M. Thun, W. Diver, S. Gapstur, P. Pharoah, D. Easton, D. Albanes, S. Weinstein, J. Virtamo, L. Vatten, K. Hveem, I. Njølstad, G. Tell, C. Stoltenberg, Rajiv Kumar, K. Koppová, O. Cussenot, S. Benhamou, E. Oosterwijk, S. Vermeulen, K. Aben, S. Marel, Y. Ye, C. Wood, X. Pu, A. Mazur, E. Boulygina, N. Chekanov, M. Foglio, D. Lechner, I. Gut, S. Heath, H. Blanché, A. Hutchinson, G. Thomas, Zhaoming Wang, M. Yeager, J. Fraumeni, K. Skryabin, J. Mckay, N. Rothman, S. Chanock, M. Lathrop, P. Brennan (2011)
Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3Nature Genetics, 43
S. Sekkate, Mouna Kairouani, H. Abahssain, B. Serji, S. Boutayeb, H. Mrabti, H. Errihani (2012)
[Gastrointestinal stromal tumors].Presse medicale, 41 10
S. Sherman, L. Wirth, J. Droz, M. Hofmann, L. Bastholt, R. Martins, L. Licitra, M. Eschenberg, Yu‐Nien Sun, T. Juan, D. Stepan, M. Schlumberger (2008)
Motesanib diphosphate in progressive differentiated thyroid cancer.The New England journal of medicine, 359 1
P. Okunieff, Yuhchyau Chen, D. Maguire, Amy Huser (2008)
Molecular markers of radiation-related normal tissue toxicityCancer and Metastasis Reviews, 27
(2010)
GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide, IARC CancerBase No. 10 [Internet]
N. Ferrara (2001)
Role of vascular endothelial growth factor in regulation of physiological angiogenesis.American journal of physiology. Cell physiology, 280 6
H. Burstein, Yu‐Hui Chen, L. Parker, J. Savoie, J. Younger, I. Kuter, P. Ryan, J. Garber, Helen Chen, S. Campos, L. Shulman, L. Harris, R. Gelman, E. Winer (2008)
VEGF as a Marker for Outcome Among Advanced Breast Cancer Patients Receiving anti-VEGF Therapy with Bevacizumab and Vinorelbine ChemotherapyClinical Cancer Research, 14
E. Genega, M. Ghebremichael, Robert Najarian, Yineng Fu, Yihong Wang, P. Argani, Chiara Grisanzio, S. Signoretti (2010)
Carbonic anhydrase IX expression in renal neoplasms: correlation with tumor type and grade.American journal of clinical pathology, 134 6
H. Hurwitz, L. Fehrenbacher, W. Novotny, T. Cartwright, J. Hainsworth, W. Heim, J. Berlin, A. Baron, S. Griffing, E. Holmgren, N. Ferrara, G. Fyfe, B. Rogers, R. Ross, F. Kabbinavar (2004)
Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.The New England journal of medicine, 350 23
Int. J. Mol. Sci. 2013, 14, 9338-9364; doi:10.3390/ijms14059338 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review 1 2 3,4 1 Markus Wehland , Johann Bauer , Nils E. Magnusson , Manfred Infanger 3, and Daniela Grimm * Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, Magdeburg D-39120, Germany; E-Mails: [email protected] (M.W.); [email protected] (M.I.) Max-Planck Institute for Biochemistry, Am Klopferspitz 18, Martinsried D-82152, Germany; E-Mail: [email protected] Department of Biomedicine, Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, 8000 Aarhus C, Denmark; E-Mail: [email protected] Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +45-8716-7693; Fax: +45-8612-8804. Received: 28 February 2013; in revised form: 25 March 2013 / Accepted: 18 April 2013 / Published: 29 April 2013 Abstract: Angiogenesis, the development of new vessels from existing vasculature, plays a central role in tumor growth, survival, and progression. On the molecular level it is controlled by a number of pro- and anti-angiogenic cytokines, among which the vascular endothelial growth factors (VEGFs), together with their related VEGF-receptors, have an exceptional position. Therefore, the blockade of VEGF signaling in order to inhibit angiogenesis was deemed an attractive approach for cancer therapy and drugs interfering with the VEGF-ligands, the VEGF receptors, and the intracellular VEGF-mediated signal transduction were developed. Although promising in pre-clinical trials, VEGF-inhibition proved to be problematic in the clinical context. One major drawback was the generally high variability in patient response to anti-angiogenic drugs and the rapid development of therapy resistance, so that, in total, only moderate effects on progression-free and overall survival were observed. Biomarkers predicting the response to VEGF-inhibition might attenuate this problem and help to further individualize drug and dosage determination. Although up to now no definitive biomarker has been identified for this purpose, several Int. J. Mol. Sci. 2013, 14 9339 candidates are currently under investigation. This review aims to give an overview of the recent developments in this field, focusing on the most prevalent tumor species. Keywords: cancer; anti-angiogenic therapy; biomarkers; VEGF Abbreviations: AMACR, Alpha-methylacyl-CoA racemase; Ang, Angiopoietin; ATP, Adenosine triphosphate; BRAF, Raf murine sarcoma viral oncogene homolog B1; CAF, Cytokine and angiogenic factor; CAIX, Carbonic anhydrase IX (CAIX); CEC, Circulating endothelial cells; CD, Cluster of differentiation; CR, Castration resistance; CT, Computer tomography; CTC, Circulating tumor cells; CXC motif, Chemokine, CXCR4, receptor type 4; DNA, Deoxyribonucleic acid; DTC, Differentiated thyroid cancer; FDA, Food and Drug Administration; FDG, F-fluorodeoxyglucose; FGF, Fibroblast growth factor; FLT-3, Fms-like tyrosine kinase 3; Fluorouracil, Folinic acid; FOLFIRI, Irinotecan combination therapy; FOLFOX4, Oxaliplatin combination therapy; HER2, Human Epidermal Growth Factor Receptor 2; HIF, Hypoxia-inducible transcription factor; ICAM, Intercellular adhesion molecule; IEF, Isoelectric focusing; IgG, Immunoglobulin G; IL, Interleukin; K-ras, Kirsten rat sarcoma viral oncogene homolog; KDR, Kinase insert domain receptor; KIT, Mast/stem cell growth factor receptor; LDH, Lactate dehydrogenase; MAPK, Mitogen-activated protein kinase; MAP2K, Mitogen-activated protein kinase kinase; mCRPC, Metastatic castration-resistant prostate cancer; MMP, Matrix metalloproteinase; MRI, Magnetic resonance imaging; MTC, Medullary thyroid carcinoma; NGAL, Neutrophil gelatinase associated lipocalin; NIH, National Institutes of Health; NO, Nitric oxide, OS, Overall survival; PC, Prostate cancer; PET, Positron emission tomography; PFS, Progression-free survival; PlGF, Placenta growth factor; PRKC, Protein kinase C; PSA, Prostate-specific antigen; PTC, Papillary thyroid cancer; PTTG, Pituitary Tumor-Transforming Gene 1-Interacting Protein; RAF1, Proto-oncogene c-RAF; RCC, Renal cell carcinomas;, RIBBON-1, Regimens in Bevacizumab for Breast Oncology-1; RNA, Ribonucleic acid; SCID, Severe combined immunodeficiency; SNP, Single Nucleotide Polymorphisms; TARGET, Treatment Approaches in Renal Cancer Global Evaluation Trial; Tg, Thyroglublin; TKI, Tyrosine kinase inhibitor; TNM, Tumor Node Metastasis system; TTP, Time to progression; ULN, Upper limit of normal; VCAM, Vascular cell adhesion molecule; VEGF, Vascular endothelial growth factors; VHL, Von Hippel-Lindau tumor suppressor; XELIRI, Capecitabine and Irinotecan combination therapy; XELOX, Capecitabine and Oxaliplatin combination therapy. 1. Introduction The growth and progression of tumors is crucially dependent on the supply of oxygen and the exchange of nutrients and metabolites with the surrounding tissue. As transport based on diffusion of these molecules is limited to very short distances of less than 3–4 mm only, a tumor exceeding this size needs to develop a vascular system in order to survive. The most important process driving this neovascularization is angiogenesis, the development of new vessels from the existing vascular system [1,2]. Physiologically, angiogenesis is active in normal adults during placenta formation and in wound healing [3,4], but deregulated angiogenesis can occur in diabetes, psoriasis, or rheumatoid Int. J. Mol. Sci. 2013, 14 9340 arthritis [5]. Most importantly, angiogenesis is also implied in cancer. Starting early during tumor development [6,7] it is an important determinant of tumor aggressiveness and the degree of metastatic spread [8]. On the molecular level, angiogenesis is controlled predominantly by the relatively small family of vascular endothelial growth factors (VEGFs). It comprises VEGF-A (commonly named VEGF), VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placenta growth factor (PlGF) [9–12]. Moreover, angiogenesis can be induced also via alternative pathways by other soluble factors such as fibroblast growth factor 1 and 2 (FGF1 and FGF2), angiopoietin or ephrin A1 and A2 [13,14]. While basal (blood) VEGF levels are necessary to sustain an intact vascular system [15], many tumors are characterized by elevated secretion of various VEGF isoforms [16]. This is considered to be a reaction of the cancer cells to a hypoxic and growth-factor rich environment [17–19] they are exposed to due to their high proliferation rate. The elevated VEGF levels may stimulate endothelial cells of nearby blood vessels to develop new vessels in order to supply the tumor with nutrients and oxygen and thus support its further growth [20–25]. The VEGF proteins are ligands for three tyrosine kinase receptors: VEGF receptor 1 (VEGFR-1, also called Flt-1), VEGF receptor 2 (VEGFR-2), and VEGF receptor 3 (VEGFR-3) [26–28]. Vascular endothelial cells predominantly express VEGFR-1 (with VEGF-A, VEGF-B, and PlGF as ligands) and VEGFR-2 (with VEGF-A as its main ligand [29]), whereas VEGFR-3 (binding VEGF-D and VEGF-E [30]) is mostly found in lymphatic endothelial cells controlling lymphangiogenesis, but can also be expressed in tumor vessels or chronic inflammatory wounds [16,31,32]. VEGF-A is the central factor in the promotion and regulation of tumor angiogenesis, VEGF signaling is mainly mediated by VEGFR-2 [33,34], while VEGFR-1 is believed to act as a decoy receptor, controlling VEGF availability [35,36]. VEGF-A/VEGFR-2 signaling plays an important role in both, physiological and pathophysiological processes, including burn injury [37], wound healing [38,39] and tumor angiogenesis. Importantly, it has been demonstrated as well that VEGF-A is a survival factor for endothelial cells [20,40–43]. 2. Anti-Angiogenic Therapy Considering the outstanding importance of angiogenesis for tumor growth and survival in general and the role of the VEGF-A/VEGFR-2 signaling system in particular, several drugs have been developed, which interfere with different angiogenic molecules. In principle, three different modes of action are possible: interception of the VEGF ligand, blockade of the VEGFR, or interruption of the intracellular VEGFR-mediated signaling. Examples for drugs targeting the VEGF-A ligand are Bevacizumab and Aflibercept. Bevacizumab is a VEGF-binding humanized recombinant antibody, which inhibits the VEGF-VEGFR-interaction [44]. In the clinical context it has been used in lung [45–48], breast [49–53], colon [54–58], renal [59,60], gastric [61], pancreatic [62,63], and prostate cancer [64], as well as melanoma [65]. Aflibercept is a fusion protein of the human Fc part of IgG1 and the extracellular domain of VEGFR. As such it is able to quench VEGF-A and -B, and PlGF-1 and 2, effectively removing the soluble ligands from the VEGF-VEGFR-cascade. So far Aflibercept has been applied in ovarian [66], colorectal [67], lung [68], Int. J. Mol. Sci. 2013, 14 9341 metastatic gynecologic soft-tissue [69], and urothelial metastatic transitional cell cancer [70], as well as melanoma [71] and glioblastoma [72]. Ramucirumab, a human antibody specific for the extracellular ligand-binding domain of VEGFR-2, belongs to the class of VEGFR-blocking drugs [73]. Ramucirumab has been used in studies for a multitude of different cancer types and has shown the best results for stable disease (only minor increases or decreases in tumor size) in renal, uterine, colorectal, and ovarian carcinoma [74]. Small-molecule tyrosine kinase inhibitors (TKIs) inhibit ATP binding to the tyrosine domain of VEGFRs and therefore interrupt the VEGFR signal transduction. The most prominent members of this class of drugs are Sunitinib and Sorafenib, which are primarily used in renal [75] and gastrointestinal stromal tumors [76] or renal [77] and hepatocellular cancer [78], respectively. Further members include Motesanib, which is used in lung [79] and medullary thyroid cancer [80], or Pazopanib, which is approved for renal cell cancer and soft tissue sarcomas [81] (see Figure 1 for a brief overview). Figure 1. Overview of representative anti-angiogenic drugs and their targets in the angiogenic pathway. FLT-3: Fms-like tyrosine kinase 3; KIT: Mast/stem cell growth factor receptor; MAP2K: Mitogen-activated protein kinase kinase; MAPK: Mitogen-activated protein kinase; PDGFR: Platelet derived growth factor receptor; PRKC: Protein kinase C; RAF1: Proto-oncogene c-RAF; VEGFA: Vascular endothelial growth factor A; VEGFR-1: Vascular endothelial growth factor receptor 1; VEGFR-2: Vascular endothelial growth factor receptor 2. However, although many studies seem to indicate a modest benefit of anti-angiogenic therapy, it generally suffers from a high variability in the response by the individual patient. Possible reasons for this observation may be the general capability of endothelial cells to form new vessels independently of an enhancement of the VEGF-A/VEGFR-2 signaling system. In a series of in vitro experiments, our group could demonstrate that cellular changes [82,83] induced by culturing endothelial cells under simulated microgravity trigger some cells to form tubes, which resemble the intima of blood Int. J. Mol. Sci. 2013, 14 9342 vessels [43,84,85]. This suggests that some types of cancer cells may activate a mechanism inducing neighboring endothelial cells to provide a supply of oxygen and nutrients to a tumor when the VEGF/VEGFR signaling system is switched off by drugs. Therefore, it would be an important milestone to identify factors, which indicate the tendency of some tumor-subtypes in developing evasive strategies against anti-angiogenesis treatment. Knowledge of such factors will allow the prediction of and the adequate reaction to these effects. Hence a more individualized treatment of any patient could enhance the success of the therapy. 3. Biomarkers Cancer cells are usually classified by biomarkers. A biomarker, as defined by the NIH, is “a characteristic objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention” [86]. Several types of biomarkers can be distinguished. Prognostic biomarkers help estimating the overall disease outcome, independent from therapy [87]. Predictive biomarkers on the other hand provide information about the response or survival of a certain patient under a specific treatment prior to therapy [88]. Furthermore, biomarkers can also have screening, diagnostic, pharmacodynamic, and safety-related properties or act as surrogate parameters. The use of biomarkers might therefore be a way to circumvent the drawbacks of indiscriminate anti-angiogenic therapy by enabling physicians to select patients with the highest likelihood for a positive response to a treatment. This review will focus on recent developments in biomarkers for anti-angiogenic therapy in the most prevalent cancers. 3.1. Biomarkers in Colorectal Cancer Colorectal cancer is the second most frequent cause of death in North America and Europe with about 600,000 deaths and a rate of approximately 1.2 million new cases per year worldwide [89]. At the moment, no confirmed biomarkers are known allowing the prediction of anti-angiogenic therapy efficacy for this cancer. It was found in clinical trials that the survival benefit from adding Bevacizumab to standard chemotherapy was neither determined by K-ras, BRAF, or p53 mutation status nor by VEGF, p53 or thrombospondin 2-expression [90,91]. For that reason it is important to find new candidates to identify suitable colorectal tumor patients for VEGF-targeted therapeutic approaches. 3.1.1. Circulating Biomarkers Blood is a relatively easily available material for the analysis of biomarkers and has a great potential for this application. Several studies have analyzed circulating molecules for their potential as predictive biomarkers for colorectal cancer. Cetin et al. [92] found that in a cohort of patients treated with FOLFIRI or XELOX in combination with Bevacizumab, serum LDH and neutrophil levels higher than the upper limit of normal (ULN) were independent predictors of short term survival. With a similar therapeutic regimen, Kopetz et al. [93] have screened a total of 37 plasma cytokines and circulating angiogenic factors for their use as biomarkers for treatment response or resistance to a FOLFIRI/Bevacizumab therapy. From this panel, elevated IL-8 levels at baseline were linked to a shorter progression-free survival (PFS). Int. J. Mol. Sci. 2013, 14 9343 Angiopoietin-2 is another potentially valuable circulating biomarker. It has been proposed to be involved in VEGF function and vascular remodeling. Interestingly, low serum angiopoietin-2-levels were found to be associated with a high overall survival (OS) of >90% after 18 months and a better response rate to anti-angiogenic therapy of >80% compared to high serum angiopoietin-2-levels in a study analyzing patients receiving Bevacizumab in combination with different chemotherapeutic regimens (FOLFOX, FOLFIRI, XELOX, XELIRI) [94]. Finally, circulating endothelial cells (CEC) have been found to predict the response to Bevacizumab-therapy in colorectal cancer. Blood from patients receiving FOLFOX4 and Bevacizumab was analyzed for endothelial cells before and during treatment. It could be shown that no correlation existed between the CEC levels and the outcome in a FOLFOX4 alone control group. However, CEC proved to be a strong indicator for the outcome of the Bevacizumab-based therapy. Patients with less than 65 CEC/4 mL blood at baseline (as determined by the CellSearch system), had a significantly longer median PFS and OS than patients with 65 CEC/4 mL or more. In addition, a low proportion of CXCR4-positive CEC of below 20% at baseline was also correlated to significantly longer PFS and OS [95,96]. These findings were confirmed by another study, which showed that a total number of 40 CEC/mL or less was connected to longer PFS [97]. The same group further investigated the course of CEC levels over the duration of treatment and the role of the fraction of apoptotic cells among them. They found that increases of both CEC and the apoptotic CEC subpopulation at the 6th cycle of Bevacizumab-based therapy were statistically significant indicators for better PFS [98]. 3.1.2. Genetic Biomarkers Genes involved in angiogenesis show a relatively high level of variation, ranging from silent SNPs to functional polymorphisms. The latter were tested in the VEGF, KDR, IL6, CXR1 and -2, P53, MMP2,-7,-9, and ICAM genes of patients with metastatic colorectal cancer receiving FOLFOX or XELOX with Bevacizumab using genomic DNA from peripheral blood. The IL-6 G-174C and P53 codon 72 polymorphisms were found to be correlated to a positive response to Bevacizumab therapy. Furthermore, PFS was significantly associated with MMP9 C-1562T and CXCR-1 G + 2607C [99]. In another study, the Nordic ACT trial (Bevacizumab + FOLFOX, XELOX; FOLFIRI, or XELIRI), the VEGFR-1 319 C/A SNP has been identified as significantly associated with response to Bevacizumab. Objective response rates differed significantly between the three genotypes (CC = 36% vs. CA = 40% vs. AA = 56%, p = 0.048, or CC + CA = 39% vs. AA = 56%, p = 0.015), indicating that the A-allele exerts a strong beneficial effect [100]. CD133, a trans-membrane protein isolated from colorectal cancer stem cells [101,102], has biomarker properties as well. Two SNPs have been identified as being useful in the prediction of PFS and OS in patients treated with FOLFOX/Bevacizumab or XELOX in first line [103]. Patients carrying either CC in both rs2286455 and rs3130 SNPs or a combination of CT with CT or TT exhibited a doubled PFS (16.5 months vs. 8.4 months, p = 0.010) after treatment with FOLFOX/Bevacizumab as compared to the rest. Int. J. Mol. Sci. 2013, 14 9344 3.1.3. Physiologic Biomarkers Hypertension is a very common side effect of VEGF inhibitor medications, with general incidence rates of about 20% and grade 3 hypertension percentages of approximately 11% [56, 104]. Hurwitz et al. concluded in their recent paper that early treatment-related blood pressure increases do not predict clinical benefit from Bevacizumab based on PFS or OS outcomes. BP increases do not appear to have general prognostic importance for patients with advanced cancer [104]. Although the exact mechanism of hypertension induction by anti-angiogenic treatment is unknown, it is hypothesized that VEGF signaling influences NO-synthase activity. VEGF inhibitors might therefore reduce NO-production, leading to increased vasoconstriction and ultimately hypertension, which would be an indicator for a successful inhibition of angiogenesis [105]. This idea has been confirmed by different studies. Scartozzi et al. observed that Bevacizumab-induced grade 2–3 hypertension in patients receiving Irinotecan, Fluorouracil, and Bevacizumab was significantly associated with improved PFS (14.5 months vs. 3.1 months, p = 0.04) [106]. Österlund et al. described that hypertension was associated with prolonged PFS (10.5 months vs. 5.3 months, p = 0.008) and OS (25.8 months vs. 11.7 months, p < 0.001) in patients treated with Bevacizumab-containing chemotherapy [107]. Development of hypertension within three months was identified as an independent prognostic factor and no relation of hypertension to thromboembolic complications could be detected. In a retrospective analysis of patients with a therapeutic regimen of FOLFIRI, FOLFOX, XELOX, XELIRI, or FOLFOXIRI together with Bevacizumab, De Stefano et al. observed an induced grade 2–4 hypertension in 17.6% of the cases. Of the patients with induced arterial hypertension, 84.6% achieved a complete or partial response, whereas patients without these side effects only had 41.9% (p = 0.006). In addition and comparable to the other studies, hypertension was associated with improved PFS (15.1 months vs. 8.3 months, p = 0.04) [108]. 3.2. Biomarkers in Breast Cancer Among women, breast cancer is the malignancy with the highest occurrence at a rate of about 23% and a total number of approximately 1.4 million new cases per year worldwide. Furthermore, with about 460,000 cases per year it is also the most frequent cause of death due to cancer [89]. Unfortunately, so far anti-angiogenic therapy in general had only limited success. Most clinical studies showed no benefit in OS and PFS, the FDA withdrew its approval of Bevacizumab as a drug against metastatic HER2-negative breast cancer, and Sunitinib has failed altogether [109]. However, although anti-angiogenic therapy does not seem to be an option for every breast cancer patient, it is interesting to note that in each trial were patients who benefitted strongly from this regimen. So far no pattern has been identified on how to select these individuals, but efforts are ongoing to discover biomarkers for this purpose. 3.2.1. Circulating Biomarkers In a study with combined Bevacizumab/Vinorelbine chemotherapy Burstein et al. could demonstrate that baseline VEGF plasma levels were associated with the time to progression (TTP). Patients with VEGF concentrations >32.6 pg/mL had a median TTP of 3.7 months, whereas patients with VEGF levels <32.6 pg/mL had a median TTP of 9.3 months (p = 0.003) [110]. In addition, in Int. J. Mol. Sci. 2013, 14 9345 locally advanced breast cancer preoperatively treated by Docetaxel with or without Bevacizumab, low baseline serum concentrations of both VCAM-1 and E-selectin were significant (p = 0.033 and p = 0.035, respectively) predictors of clinical response in the form of operability [111]. Burstein et al. measured the VEGF, soluble VEGFR-2 (sVEGFR-2), soluble VEGFR-3 (sVEGFR-3), and soluble KIT (sKIT) plasma levels at baseline and during therapy in patients receiving Sunitinib after chemotherapy with and Anthracycline or Taxane. They found a trend for a connection of decreasing sVEGFR-3 levels (≥20%) with longer OS (p = 0.07). In addition, decreases of sKIT levels by ≥50% were significantly associated with longer TTP (p < 0.001) and OS (p = 0.0194) [112]. Finally, CEC proved to be predictors of anti-angiogenic therapy success in a cohort of patients receiving metronomic, i.e., repeated, low-dosed, chemotherapy in conjunction with Bevacizumab. A significant association of high baseline levels of CEC with overall response (p = 0.02), clinical benefit (p = 0.01), and improved PFS (p = 0.04) was observed in this study [113]. 3.2.2. Genetic Biomarkers So far, only polymorphisms in the VEGF and VEGFR2 genes have been analyzed for their potential to serve as a biomarker for anti-angiogenic therapy in breast cancer. Schneider et al. did a retrospective study on the ECOG2100 cohort, investigating five SNPs for VEGF and two for VEGFR2. They found that VEGFR2 polymorphisms did not show any influence on OS or any other clinical parameter. Two VEGF genotypes, on the other hand, VEGF-2578 AA and VEGF-1154 AA, were significantly associated with improved OS (p = 0.023 and p = 0.001, respectively) in the Paclitaxel/Bevacizumab combination arm of the study [114]. 3.2.3. Physiologic Biomarkers The role of anti-angiogenic therapy induced hypertension is subject of debate, as currently there are contradicting results found in the literature. Beside identifying two VEGF-SNPs as candidate biomarkers, Schneider et al. also observed in the same study that patients who developed grade 3–4 hypertension had an improved median OS of 38.7 months vs. 25.3 months of normotensive patients (p = 0.002) [114]. In contrast to this, a meta-analysis of clinical outcome under anti-angiogenic medication (including the RIBBON-1 trial, comparing Bevacizumab + chemotherapy vs. Bevacizumab + placebo) did not show a prognostic value of early hypertension [115]. Further investigations are needed to clarify this situation. 3.2.4. Tissue Biomarkers Blood levels of VEGF and related molecules can be influenced by many different additional factors besides cancer and may therefore be misleading or difficult to interpret in an analysis of their predictive value. Hence it might be a better approach to directly determine the expression of candidate genes or proteins inside the tumor tissue itself. This, of course, poses some problems, like easy availability of ideally multiple samples over the course of the therapy. Fountzilas et al. immunohistochemically investigated a panel of biomarker candidate proteins in patients receiving a first line Paclitaxel/Bevacizumab therapy against metastatic breast cancer. They Int. J. Mol. Sci. 2013, 14 9346 found that high intra-tumoral expression of VEGFR-3 was associated with clinical response, whereas VEGFR1 overexpression was an indicator for poor survival [116]. 3.3. Biomarkers in Thyroid Cancer Although representing only a small portion of cancer cases with an incidence of about 213,000 new cases (which equates to approximately 1.7%) and a mortality of a bit over 35,000 cases per year worldwide, thyroid cancer is the most frequent malignant endocrine tumor [89,117]. For a long time radio-therapy was the classical way to fight this disease [118]. Besides certain subtypes, such as the progressive or advanced medullary (MTC), or the differentiated (DTC) thyroid cancers [119,120], especially distantly metastatic tumors are still difficult to treat with the traditional therapies [121,122]. Earlier studies have shown that targeting endothelial cells in SCID mice bearing a follicular thyroid ML-1 tumor by the tyrosine kinase inhibitor PTK787/ZK222584 reduced tumor growth and vascularization [123]. In addition, an Angs/Tie-2 system dysfunction was suggested to play an important role in thyroid tumorigenesis. The decrease of the concentration of the angiogenesis inhibitor Ang-1 in serum was a useful additional biomarker for the presence of thyroid cancer [124]. Liang et al. demonstrated that MMP2, PTTG, VEGF-C, CXCR4 and bFGF are potential cellular tumor markers for identifying thyroid cancer with greater risk for metastasis. The authors suggest that the combination of the angiogenic factors VEGF-C and bFGF favors progression in metastatic thyroid carcinoma [125]. Thus, treating thyroid cancer with the help of pharmacological inhibitors of angiogenesis was considered to be a promising new way of fighting thyroid cancer [126]. Subsequently, over the course of the last five years, the option of anti-angiogenic treatment has been explored [127–133]. The results were encouraging, but a considerable variation in the response of the various patients was observed. Therefore, predictive biomarkers are sought, which could indicate the success of an anti-angiogenic treatment in advance. 3.3.1. Circulating Biomarkers Broutin et al. showed in 2011 [134] that cytokines are possible biomarkers for the tumor response towards Sunitinib treatment of in medullary thyroid carcinomas (MTC). A significant decrease of tumor growth and angiogenesis was observed after Sunitinib therapy in a mouse model, which is associated with significantly decreased serum IL-8 levels. In parallel, the serum of 27 patients with MTC showed significantly increased serum concentrations of IL-8 compared to the healthy donor population [134]. In addition, we found that IL-8 gene expression is involved in human thyroid cancer cell tumor formation [135]. Therefore, IL-8 appears very interesting as a therapeutic target and as a clinical biomarker for the success of an anti-angiogenic treatment. Bass et al. analyzed a cohort of patients with progressive advanced thyroid cancer receiving Motesanib as anti-angiogenic therapy over a period of 48 weeks [136]. During this time, the group determined serum and plasma concentrations of sVEGFR1 and -2, PlGF, VEGF, bFGF, sKIT, sVCAM-1, angiopoietin-1 and 2, and enzyme activities of caspases-3 and -7. It was found that patients with baseline VEGF levels below 671 pg/mL had a significantly better PFS than patients with higher baseline VEGF concentrations (p = 0.0007). Furthermore, the study could show that not only absolute serum concentrations or activities but also their changes during treatment were a useful indicator Int. J. Mol. Sci. 2013, 14 9347 for patient response to therapy. Increases of PlGF by more than 4.7 fold (p < 0.0001) and of caspase 3/7-activity by more than 2.1-fold (p < 0.0001) as well as changes by less than −1.6-fold of sVEGFR2 (p < 0.0001) were independent predictors enabling investigators to separate responders from non-responders [136]. In another study, Sorafenib was applied in advanced iodine-refractory differentiated thyroid cancer. The investigators analyzed serum thyroglobulin (Tg) levels and found that both Tg baseline levels as well as Tg response were useful in predicting the clinical outcome of anti-angiogenic therapy with Sorafenib [137]. Furthermore, Sorafenib and Sunitinib have been shown to be effective in patients with widely metastatic, progressive differentiated thyroid cancer. Logarithmic thyroglobulin (Log Tg) significantly correlated with response to this treatment [138]. Now, serum thyroglobulin levels are suggested to have a value as a surrogate marker of response. So far, Tg had been used as a diagnostic tool [139] or as a predictor of recurrence after thyroidectomy [140,141]. 3.3.2. Tissue Biomarkers Shaik and coauthors described a subtype of human papillary thyroid cancer (PTC), which is resistant to therapy with VEGF receptor 2 (VEGFR2)-inhibitor. In these poorly differentiated PTC cells, the beta-transducin-repeat-containing protein inhibits cell migration and decreases sensitivity to Sorafenib [142]. In various thyroid carcinomas, hypoxia-inducible factor-1alpha expression was found to be increased [143]. Zerilli et al. demonstrated that hypoxia-inducible factor-1alpha is expressed in papillary thyroid carcinomas and is not only regulated by hypoxia but also by the BRAF(V600E)-mediated signaling pathway [143]. BRAF(V600E) (serine/threonine-protein kinase B-raf) is an oncogene linked to angiogenesis. Its presence in a cancer cell favors angiogenesis [144]. Besides the two preceding proteins, a number of proteins, especially membrane proteins, may be indicators of successful and un-successful angiogenic therapy [145]. Therefore, our group applies the methods of free-flow IEF and mass spectrometry to screen and evaluate as many proteins of thyroid cancer cells as possible in comparison to their behavior [146–149]. 3.4. Biomarkers in Renal Cancer Renal cancer is among the 10 most frequently occurring cancers in western countries and accounts for more than 100,000 deaths worldwide per year [150]. Renal cell carcinomas (RCC) comprise approximately 90% of renal cancers with the most common histological subtype being clear cell RCC (ccRCC) accounting for 80% of the cases. Up to 70% of patients are presented with localized disease, and approximately one third of these will relapse with metastatic RCC following radical or partial nephrectomy. This clearly indicates the need for tools to maximize the benefit of drug treatment and evaluate the risk of relapse on an individual basis. Today, classification of RCC is largely based on morphology and despite the emergence of promising prognostic biomarkers in RCC, none have been routinely applied in the clinic. Furthermore, no predictive biomarkers are used to identify patients who might benefit from a given treatment. Knowledge of ccRCC biology has led to a number of anti-angiogenic systemic therapies targeting VEGF either directly by inhibiting antibodies or via targeted tyrosine kinase inhibitors. First line adjuvant therapies include Sunitinib and Pazopanib which are effective in 70%–80% of cases. There Int. J. Mol. Sci. 2013, 14 9348 are no biomarkers available that may discriminate between patients who will benefit from this treatment and those who will not. 3.4.1. Circulating Biomarkers Plasma VEGF and soluble VEGFR-2 (sVEGFR-2) has been tested as predictive markers of anti-angiogenic treatment in phase III Treatment Approaches in Renal Cancer Global Evaluation Trial (TARGET). In this study high baseline levels of VEGF were associated with poor prognosis but baseline sVEGFR-2 and changes in VEGF or sVEGFR-2 could not predict the response to Sorafenib [151]. In phase II trials using Sunitinib or Pazopanib significant changes in sVEGFR-2 levels were demonstrated in patients showing objective tumor response to treatment compared to patients with stable or progressive disease [152,153]. In a recent study of an unselected population of advanced kidney cancer patients receiving Sunitinib, serum levels of circulating neutrophil gelatinase associated lipocalin (NGAL) and VEGF were strongly associated to an improved progression free survival in both univariate and bivariate analyses and performed better than the Motzer score considered golden standard [154]. NGAL is upregulated in cells during “stress” and is tightly coupled to matrix metalloproteinase 9 (MMP-9), involved in the degradation of the extracellular matrix [155], making these proteins relevant for further analyses. High levels of CAIX protein was shown to correlate to the responsiveness of interleukin (IL)-2 with 78% of patients responding to IL-2 showing high expression (>85% tumor cells) of CAIX protein in tumors compared to 51% in non-responders. The value of CAIX as a predictive marker is currently under investigation [156,157]. Similarly, HIF-1 alpha expression has been implicated as a potential prognostic marker where high (>35%) tumor-immunostaining levels were shown to correlate to shorter survival [158]. In addition, HIF-2 alpha expression was correlated to a beneficial responsive to Sunitinib in 43 ccRCC samples [159]. Other promising protein markers include tumor-associated B7-H1 and insulin-like growth factor II mRNA binding protein 3, both of which have been independently validated and add value to existing nomograms in RCC [160,161], but have not found their way into the clinic. Recent studies suggest that in addition to using only single biomarkers it might be more promising to screen a whole panel of cytokines and angiogenic factors (CAFs). Zurita et al. were able to identify a candidate CAF signature that may help predict PFS benefit from Sorafenib treatment in patients suffering from metastatic RCC [162,163]. 3.4.2. Genetic Biomarkers Single Nucleotide Polymorphisms Genome-wide association studies have reported SNPs that may increase the risk of developing RCC [164,165]. A large study comprising 397 patients with RCC treated with Pazopanib addressed the response to TKI therapy [166]. 27 SNPs in 13 genes were reported including genes related to angiogenesis VEGF, IL-8 and fibroblast growth factor 2. Two polymorphisms in IL-8 were significantly associated to a shorter PFS of 27 weeks compared to the wild type genotype (48 weeks). Notably, IL-8 has recently been suggested as to be involved in resistance to TKIs [167]. In another study the response and toxicity of Sunitinib were evaluated in patients with ccRCC. Two VEGFR-3 Int. J. Mol. Sci. 2013, 14 9349 SNPs were associated with reduced PFS, a variant of CYP3A5*1 was associated with increased toxicity, however, the IL-8 variants described above were not found in this study [168]. Interestingly, a third study found that SNPs in CYP3A5 increased survival [169], indicating little concordance between these studies. To some extent these disparate observations may be explained by sample number, indicating the need for large studies to increase the statistical power. Perhaps an even greater challenge arises from the heterogeneity found within individual tumors. This point was demonstrated using multi-region genetic analysis, showing that up to two thirds of mutations found in one region of the tumor were not present in other regions of the same tumor, suggesting that both favorable and unfavorable conclusions can be made depending on the specific specimen sampling [170]. Clearly, heterogeneity is a feature of all cancers, but to what extent these differences impact the tumor phenotype and therapeutic targets is unknown. However, mRNA profiling and expression of protein biomarkers are likely more robust to these changes as they are upstream of these events. 3.5. Biomarkers in Prostate Cancer Among men prostate cancer (PC) is the second most frequently occurring cancer with about 900,000 new cases and approximately 260,000 deaths per year worldwide. It also has by far the highest worldwide 5-year prevalence of roughly 24% [89]. In USA and Europe, PC is estimated to account for 25% of cancer diagnoses in males and 9% of cancer related deaths [171,172]. The diagnosis of PC includes measurement of serum prostate-specific antigen (PSA), rectal examination and morphological/histological evaluation of needle biopsy. The treatment of prostate cancer includes prostatectomy and radiation, while androgen withdrawal is used to delay the progression of metastatic disease [173]. However, over time tumors become resistant to androgen deprivation and develop into castrate resistance PC (CRPC) with high morbidity and mortality. Therefore, anti-angiogenic treatment was considered an alternative way to fight PC. But, similar to breast cancer, anti-angiogenic therapy of prostate cancer has shown only moderate to disappointing effects, with little or no improvement in OS resulting from addition of Bevacizumab to a standard Docetaxel and Prednisone therapeutic regimen [64]. Nevertheless, trials with different anti-angiogenic drugs are still ongoing and biomarkers for the assessment of therapeutic efficiency are needed. 3.6. Future Developments So far, most analyses of possible biomarker candidates for the prognosis and prediction of anti-angiogenic therapy have been conducted with a rational approach (Table 1), concentrating on molecules which are more or less directly involved in angiogenic pathways. As summarized in this article, many factors, initially expected to yield clear results, proved to be not as robust for this purpose, with the most prominent example being VEGF. Many candidate parameters suffer from poor reproducibility across different tumor types and there are still not enough studies comparing the same markers in different cancers [174]. Therefore it might be necessary to think more “outside the box” and to employ a wider, assumption-free strategy by using the increasingly easier available techniques for genomic and proteomic analysis of the samples. Gene expression profiling, preferably of endothelial cells originating from the tumor tissue, might provide further insight into the different types of tumor vasculature and help select the appropriate medication [175]. Investigating the cancer cell proteome Int. J. Mol. Sci. 2013, 14 9350 and secretome might also lead to the identification of new, so far neglected molecules which are more effective than the “classical” candidates [176,177]. Moreover, decisions about the type of therapy may in future be based on a multitude of parameters. A profile comprising a number of different potential markers could help to predict the benefit of an anti-angiogenic therapy more robustly and reliably than a single biomarker, as attempted with CAF screening [162]. Table 1. Prognostic biomarkers for anti-angiogenic therapy Type Parameter Cancer Finding References LDH and neutrophil levels > ULN Circulating Serum LDH and neutrophil levels Colon [92] predict short survival IL-8 Colon Elevated IL-8 linked to shorter PFS [93] low serum levels associated with Angiopoietin-2 Colon [94] high OS CEC < 65/4mL associated with Circulating endothelial cells (CEC) Colon [95–98] longer PFS and OS High baseline levels associate with Breast [113] improved OR and PFS <32.6 pg/mL associated with longer VEGF plasma levels Breast [112] median TTP baseline concentrations ≤671 pg/mL Thyroid [136] associated with improved PFS High baseline levels associated with Renal [151] poor prognosis Changes by more than 4.7, -1.6, and PlGF and sVEGFR2 plasma levels and Thyroid 2.1-fold, respectively, indicate [136] caspase 3/7 activity response Significant changes associated with sVEGFR2 plasma levels Renal [152, 153] objective tumor response Serum NGAL and VEGF levels Renal Associated with improved PFS [154] Low levels associated with VCAM-1 and E-selection serum levels Breast [111] improved clinical response Decrease ≥ 50%associated with sKIT plasma level Breast [112] longer TTP Serum Tg levels Thyroid Predictor for clinical outcome [137, 138] CAF screen Renal Predictor for PFS benefit [162] MMP9 C-1562T and CXCR-1 G + Genetic Colon Associated with longer PFS [99] 2607C VEGFR-1 319 C/A Colon A-allele has strong beneficial effect [100] CD133 rs2286455, rs3130, and Colon Associated with PFS and OS [103] rs2240688 SNPs VEGF-2578 AA and VEGF-1154 AA Breast Associated with improved OS [114] ccB subtype Renal Associated with poor prognosis [170] Associated with increased Sunitinib VEGFR-3 and CYP3A5*1 SNPs Renal [168] toxicity Physiologic Hypertension Colon Associated with improved PFS [106–108] Breast Associated with improved OS [113] Overexpression associated with poor Tissue Tumor VEGFR-3 expression Breast [115] survival Tumor BTRC expression Thyroid Mediates Sorafenib-resistance [142] Int. J. Mol. Sci. 2013, 14 9351 4. Conclusions Anti-angiogenic therapy generally suffers from a high variability in the response by the individual patient. In order to select patients with the highest likelihood for a positive response to such a treatment, the availability of reliable predictive biomarkers for anti-angiogenic therapy will be a key factor. Although there are some promising preliminary results, no general or cancer-specific biomarker has yet emerged, which could help select patients with a positive prognosis for anti-angiogenic therapy. For its future it is therefore of vital importance to conduct larger systematic trials to translate the preclinical data into clinically usable systems and to switch from unselective therapy to a more individual drug selection based on the patients’ predispositions. Acknowledgements The authors would like to thank Peter Lindborg, Los Angeles, CA, USA, for editing the English language. Conflict of Interest The authors declare no conflict of interest. References 1. Straume, O.; Chappuis, P.O.; Salvesen, H.B.; Halvorsen, O.J.; Haukaas, S.A.; Goffin, J.R.; Bégin, L.R.; Foulkes, W.D.; Akslen, L.A. Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers. Cancer Res. 2002, 62, 6808–6811. 2. Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971, 285, 1182–1186. 3. Arnold, F.; West, D.C. Angiogenesis in wound healing. Pharmacol. Ther. 1991, 52, 407–422. 4. Reynolds, L.P.; Redmer, D.A. Angiogenesis in the placenta. Biol. Reprod. 2001, 64, 1033–1040. 5. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1995, 1, 27–31. 6. Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86, 353–364. 7. Skobe, M.; Rockwell, P.; Goldstein, N.; Vosseler, S.; Fusenig, N.E. Halting angiogenesis suppresses carcinoma cell invasion. Nat. Med. 1997, 3, 1222–1227. 8. Sullivan, R.; Graham, C.H. Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis. Rev. 2007, 26, 319–331. 9. Ferrara, N. Role of vascular endothelial growth factor. Am. J. Physiol. Cell Physiol. 2001, 280, C1358–C1366. 10. Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 666–669. 11. Tammela, T.; Enholm, B.; Alitalo, K.; Paavonen, K. The biology of vascular endothelial growth factors. Cardiovasc. Res. 2005, 65, 550–563. Int. J. Mol. Sci. 2013, 14 9352 12. Kowanetz, M.; Ferrara, N. Vascular endothelial growth factor signaling pathways, therapeutic perspective. Clin. Cancer Res. 2006, 12, 5018–5022. 13. Holderfield, M.T.; Hughes, C.C. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ. Res. 2008, 102, 637–652. 14. Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 2008, 8, 592–603. 15. Carmeliet, P.; Ng, Y.S.; Nuyens, D.; Theilmeier, G.; Brusselmans, K.; Cornelissen, I.; Ehler, E.; Kakkar, V.V.; Stalmans, I.; Mattot, V.; et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF(164) and VEGF(188). Nat. Med. 1999, 5, 495–502. 16. Valtola, R.; Salven, P.; Heikkilä, P.; Taipale, J.; Joensuu, H.; Rehn, M.; Pihlajaniemi, T.; Weich, H.; de Waal, R.; Alitalo K. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 1999, 154, 1381–1390. 17. Roskoski, R. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit. Rev. Oncol. Hematol. 2007, 62, 179–213. 18. Ruohola, J.K.; Valve, E.M.; Karkkainen, M.J.; Joukov, V.; Alitalo, K.; Härkönen, P.L. Vascular endothelial growth factors are differentially regulated by steroid hormones and antiestrogens in breast cancer cells. Mol. Cell Endocrinol. 1999, 149, 29–40. 19. Dumont, N.; Arteaga, C.L. Transforming growth factor-beta and breast cancer—Tumor promoting effects of transforming growth factor-beta. Breast Cancer Res. 2000, 2, 125–132. 20. Gerber, H.P.; McMurtrey, A.; Kowalski, J.; Yan, M.; Keyt, B.A.; Dixit, V.; Ferrara, N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Requirement for Flk-1/KDR activation. J. Biol. Chem. 1998, 273, 30336–30343. 21. Dor, Y.; Porat, R.; Keshet, E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am. J. Physiol. Cell Physiol. 2001, 280, C1367–C1374. 22. Infanger, M.; Faramarzi, S.; Grosse, J.; Kurth, E.; Ulbrich, C.; Bauer, J.; Wehland, M.; Kreutz R.; Kossmehl, P.; Paul, M.; et al. Expression of vascular endothelial growth factor and receptor tyrosine kinases in cardiac ischemia/reperfusion injury. Cardiovasc. Pathol. 2007, 16, 291–299. 23. Semenza, G. Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 2002, 64, 993–998. 24. Ferrara, N.; Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997, 18, 4–25. 25. Herbert, S.P.; Stainier, D.Y. Molecular control of endothelial cell behavior during blood vessel morphogenesis. Nat. Rev. 2011, 12, 551–564. 26. Shibuya, M.; Yamaguchi, S.; Yamane, A.; Ikeda, T.; Tojo, A.; Matsushime, H.; Sato, M. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990, 5, 519–524. 27. Terman, B.I.; Carrion, M.E.; Kovacs, E.; Rasmussen, B.A.; Eddy, R.L.; Shows, T.B. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 1991, 6, 1677–1683. 28. Karkkainen, M.J.; Mäkinen, T.; Alitalo, K. Lymphatic endothelium, a new frontier of metastasis research. Nat. Cell Biol. 2002, 4, E2–E5. Int. J. Mol. Sci. 2013, 14 9353 29. Ferrara, N. Vascular endothelial growth factor, basic science and clinical progress. Endocr. Rev. 2004, 25, 581–611. 30. Alitalo, K.; Tammela, T.; Petrova, T.V. Lymphangiogenesis in development and human disease. Nature 2005, 438, 946–953. 31. Paavonen, K.; Puolakkainen, P.; Jussila, L.; Jahkola, T.; Alitalo, K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. 2000, 156, 1499–1504. 32. Tammela, T.; Zarkada, G.; Nurmi, H.; Jakobsson, L.; Heinolainen, K.; Tvorogov, D.; Zheng, W.; Franco, C.A.; Murtomäki, A.; Aranda, E.; et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat. Cell Biol. 2011, 3, 1202–1213. 33. Takahashi, H.; Shibuya, M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. 2005, 109, 227–241. 34. Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signaling—In control of vascular function. Nat. Rev. Mol. Cell Biol. 2006, 7, 359–371. 35. Park, J.E.; Chen, H.H.; Winer, J.; Houck, K.A.; Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 1994, 269, 25646–25654. 36. Hiratsuka, S.; Minowa, O.; Kuno, J.; Noda, T.; Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 1998, 4, 9349–9354. 37. Infanger, M.; Schmidt, O.; Kossmehl, P.; Grad, S.; Ertel, W.; Grimm D. Vascular endothelial growth factor serum level is strongly enhanced after burn injury and correlated with local and general tissue edema. Burns 2004, 30, 305–311. 38. Infanger, M.; Shakibaei, M.; Kossmehl, P.; Hollenberg, S.M.; Grosse, J.; Faramarzi, S.; Schulze-Tanzil, G.; Paul, M.; Grimm, D. Intraluminal application of vascular endothelial growth factor enhances healing of microvascular anastomosis in a rat model. J. Vasc. Res. 2005, 42, 202–213. 39. Infanger, M.; Grosse, J.; Westphal, K.; Leder, A.; Ulbrich, C.; Paul, M.; Grimm, D. Vascular Endothelial Growth Factor induces extracellular matrix proteins and osteopontin in the umbilical artery. Ann. Vasc. Surg. 2008, 22, 273–284. 40. Alon, T.; Hemo, I.; Itin, A.; Pe’er, J.; Stone, J.; Keshet, E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1995, 1, 1024–1028. 41. Gerber, H.P.; Dixit, V.; Ferrara, N. Vascular Endothelial Growth Factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 1998, 273, 13313–13316. 42. Benjamin, L.E.; Golijanin, D.; Itin, A.; Pode, D.; Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 1999, 103, 159–165. 43. Infanger, M.; Kossmehl, P.; Shakibaei, M.; Baatout, S.; Witzing, A.; Grosse, J.; Bauer, J.; Cogoli, A.; Faramarzi, S.; Derradji, H.; et al. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity. Impact of vascular endothelial growth factor. Apoptosis 2006, 11, 749–764. Int. J. Mol. Sci. 2013, 14 9354 44. Ferrara, N.; Hillan, K.; Gerber, H.P.; Novotny, W. Discovery and development of Bevacizumab, an anti VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 2004, 3, 391–398. 45. Reck, M.; von Pawel, J.; Zatloukal, P.; Ramlau, R.; Gorbounova, V.; Hirsh, V.; Leighl, N.; Mezger, J.; Archer, V.; Moore, N.; et al. BO17704 Study Group. Overall survival with cisplatin-gemcitabina and Bevacizumab or placebo as first line therapy for non-squamous NSCLC: Results from a randomized phase III trial (AVAiL). Ann. Oncol. 2010, 21, 1804–1809. 46. Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-Carboplatin alone or with Bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 2006, 355, 2542–2550. 47. Johnson, D.H.; Fehrenbacher, L.; Novotny, W.F.; Herbst, R.S.; Nemunaitis, J.J.; Jablons, D.M.; Langer, C.J.; DeVore, R.F., 3rd; Gaudreault, J.; Damico, L.A.; et al. Randomized phase II trial comparing Bevacizumab plus Carboplatin and Paclitaxel with Carboplatin and Paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 2004, 22, 2184–2191. 48. Herbst, R.S.; O’Neill, V.J.; Fehrenbacher, L.; Belani, C.P.; Bonomi, P.D.; Hart, L.; Melnyk, O.; Ramies, D.; Lin, M.; Sandler, A. Phase II study of efficacy and safety of Bevacizumab in combination with chemotherapy or Erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non-small-cell lung cancer. J. Clin. Oncol. 2007, 25, 4743–4750. 49. Miller, K.D.; Chap, L.I.; Holmes, F.A.; Cobleigh, M.A.; Marcom, P.K.; Fehrenbacher, L.; Dickler, M.; Overmoyer, B.A.; Reimann, J.D.; Sing, A.P.; et al. Randomized phase III trial of Capecitabine compared with Bevacizumab plus Capecitabine in patient with previously treated metastatic breast cancer. J. Clin. Oncol. 2005, 23,792–799. 50. Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel with Bevacizumab versus Paclitaxel alone in metastatic breast cancer. N. Engl. J. Med. 2007, 357, 2666–2676. 51. Robert, N.J.; Dieras, V.; Glaspy, J.; Brufsky, A.; Bondarenko, I.; Lipatov, O.; Perez, E.; Yardley, D.; Zhou, X.; Phan, S. RIBBON-1, randomized, double blind, placebo controlled phase III trial of chemotherapy with or without Bevacizumab for first line treatment of HER2 negative locally recurrent or metastatic breast cancer. ASCO Present. J. Clin. Oncol. 2009, 27, 15s. 52. Miles, D.W.; Chan, A.; Dirix, L.Y.; Cortés, J.; Pivot, X.; Tomczak, P.; Delozier, T.; Sohn, J.H.; Provencher, L.; Puglisi, F.; et al. Phase III study of Bevacizumab plus Docetaxel campared with placebo plus docetaxel for the first line treatment of human epidermal growth factor receptor-2-negative metastatic breast cancer. J. Clin. Oncol. 2010, 28, 3239–3247. 53. Brufsky, A.M.; Hurvitz, S.; Perez, E.; Swamy, R.; Valero, V.; O’Neill, V.; Rugo, H.S. RIBBON-2, a randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of Bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2011, 29, 4286–4293. 54. Kabbinavar, F.; Hurwitz, H.I.; Fehrenbacher, L.; Meropol, N.J.; Novotny, W.F.; Lieberman, G.; Griffing, S.; Bergsland, E. Phase II randomized trial comparing Bevacizumab plus Fluorouracil(FU)/Leucovorin(LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 2003, 21, 60–65. Int. J. Mol. Sci. 2013, 14 9355 55. Kabbinavar, F.F.; Schulz, J.; McCleod, M.; Patel, T.; Hamm, J.T.; Hecht, J.R.; Mass, R.; Perrou, B.; Nelson, B.; Novotny, W.F. Addition of Bevacizumab to bolus Fluorouracil and Leucovorin in first line metastatic colorectal cancer, results of randomized phase II trial. J. Clin. Oncol. 2005, 23, 3697–3705. 56. Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus Irinotecan, Flouorouracil and Leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. 57. Saltz, L.B.; Clarke, S.; Díaz-Rubio; E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; et al. Bevacizumab in combination with oxaliplatin based chemotherapy as first line therapy in metastatic colorectal cancer: A randomized phase III study. J. Clin. Oncol. 2008, 26, 2013–2019. 58. Tebbutt, N.C.; Wilson, K.; Gebski, V.J.; Cummins, M.M.; Zannino, D.; van Hazel, G.A.; Robinson, B.; Broad, A.; Ganju, V.; Ackland, S.P.; et al. Capecitabine, Bevacizumab and Mitomycin in first line treatment of metastatic colorectal cancer: Results of the Australian gastrointestinal trials group randomized phase III MAX study. J. Clin. Oncol. 2010, 28, 3191–3198. 59. Rini, B.I.; Halabi, S.; Rosenberg, J.E.; Stadler, W.M.; Vaena, D.A.; Archer, L.; Atkins, J.N.; Picus, J.; Czaykowski, P.; Dutcher, J.; et al. Phase III trial of Bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: Final results of CALGB 90206. J. Clin. Oncol. 2010, 28, 1–7. 60. Escudier, B.; Pluzanska, A.; Koralewski, P.; Ravaud, A.; Bracarda, S.; Szczylik, C.; Chevreau, C.; Filipek, M.; Melichar, B.; Bajetta, E.; et al. AVOREN Trial investigators. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: A randomized double blind phase III trial. Lancet 2007, 370, 2103–2111. 61. Ohtsu, A.; Shah, M.A.; van Cutsem, E.; Rha, S.Y.; Sawaki, A.; Park, S.R.; Lim, H.Y.; Yamada, Y.; Wu, J.; Langer, B.; et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: A randomized, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 2011, 29, 3968–3976. 62. Kindler, H.L.; Niedzwiecki, D.; Hollis, D.; Sutherland, S.; Schrag, D.; Hurwitz, H.; Innocenti, F.; Mulcahy, M.F.; O’Reilly, E.; Wozniak, T.F.; et al. Gemcitabine plus Bevacizumab compared with Gemcitabine plus placebo in patients with advanced pancreatic cancer: Phase III trial of the cancer and leukemia group B (CALGB 80303). J. Clin. Oncol. 2010, 28, 3617. 63. Van Cutsem, E.; Vervenne, W.L.; Bennouna, J.; Humblet, Y.; Gill, S.; van Laethem, J.L.; Verslype, C.; Scheithauer, W.; Shang, A.; Cosaert, J.; et al. Phase III trial of Bevacizumab in combination with Gemcitabine and Erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 2009, 27, 2231–2237. 64. Kelly, W.K.; Halabi, S.; Carducci, M.; George, D.; Mahoney, J.F.; Stadler, W.M.; Morris, M.; Kantoff, P.; Monk, J.P.; Kaplan, E.; et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401.. J. Clin. Oncol. 2012, 30, 1534–1540. Int. J. Mol. Sci. 2013, 14 9356 65. Kim, K.B.; Sosman, J.A.; Fruehauf, J.P.; Linette, G.P.; Markovic, S.N.; McDermott, D.F.; Weber, J.S.; Nguyen, H.; Cheverton, P.; Chen, D.; et al. BEAM: A randomized phase II study evaluating the activity of Bevacizumab in combination with Carboplatinum plus Paclitaxel in patients with previously untreated advanced melanoma. J. Clin. Oncol. 2012, 30, 34–41. 66. Tew, W.P.; Colombo, N.; Ray-Coquard, I.; Oza, A.; del Campo, J.; Scambia, G.; Spriggs, D. VEGF-Trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC), preliminary results of a randomized, multicenter phase II study. ASCO Meet. Abstr. 2007, 25, 5508. 67. Tang, P.; Cohen, S.J.; Bjarnason, G.A.; Kollmannsberger, C.; Virik, K.; MacKenzie, M.J.; Brown, J.; Wang, L.; Chen, A.P.; Moore, M.J. Phase II trial of aflibercept (VEGF Trap) in previously treated patients with metastatic colorectal cancer (MCRC): A PMH phase II consortium trial. ASCO Meet. Abstr. 2008, 26, 4027. 68. Massarelli, E.; Miller, V.A.; Leighl, N.B.; Rosen, P.J.; Albain, K.S.; Hart, L.L.; Melnyk, O.; Sternas, L.; Ackerman, J.; Herbst, R.S. Phase II study of the efficacy and safety of intravenous (IV) AVE0005 (VEGF Trap) given every 2 weeks in patients (Pts) with platinum- and erlotinib-resistant adenocarcinoma of the lung (NSCLA). ASCO Meet. Abstr. 2007, 25, 7627. 69. Townsley, C.; Hirte, H.; Hoskins, P.; Buckanovich, R.; Mackay, H.; Welch, S.; Wang, L.; Polintan, R.; Chen, A.; Oza, A.M. A phase II study of aflibercept (VEGF trap) in recurrent or metastatic gynecologic soft-tissue sarcomas: A study of the Princess Margaret Hospital Phase II Consortium. ASCO Meet. Abstr. 2009, 27, 5591. 70. Twardowski, P.; Stadler, W.M.; Frankel, P.; Lara, P.N.; Ruel, C.; Chatta, G.; Heath, E.I.; Quinn, D.I.; Gandara, D.R. Phase II study of aflibercept (VEGFTrap) in patients with recurrent or metastatic transitional cell carcinoma (TCC) of the urothelium: A California Cancer Consortium trial. ASCO Meet. Abstr. 2009, 27, e16030. 71. Tarhini, A.A.; Christensen, S.; Frankel, P.; Margolin, K.; Ruel, C.; Shipe-Spotloe, J.; DeMark, M.; Kirkwood, J.M. Phase II study of aflibercept (VEGF trap) in recurrent inoperable stage III or stage IV melanoma of cutaneous or ocular origin. ASCO Meet. Abstr. 2009, 27, 9028. 72. De Groot, J.F.; Wen, P.Y.; Lamborn, K.; Chang, S.; Cloughesy, T.F.; Chen, A.P.; DeAngelis, L.M.; Mehta, M.P.; Gilbert, M.R.; Yung, W.K.; et al. Phase II single arm trial of aflibercept in patients with recurrent temozolomide-resistant glioblastoma: NABTC 0601. ASCO Meet. Abstr. 2008, 26, 2020. 73. Lu, D.; Jimenez, X.; Zhang, H.; Bohlen, P.; Witte, L.; Zhu, Z. Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int. J. Cancer 2002, 97, 393–399. 74. Spratlin, J. Ramucirumab (IMC-1121B), Monoclonal antibody inhibition of vascular endothelial growth factor receptor-2. Curr. Oncol. Rep. 2011, 13, 97–102. 75. Wood, L. Sunitinib malate for the treatment of renal cell carcinoma. Expert Opin. Pharmacother. 2012, 13, 1323–1336. 76. Sekkate, S.; Kairouani, M.; Abahssain, H.; Serji, B.; Boutayeb, S.; Mrabti, H.; Errihani, H. Gastrointestinal stromal tumors. Presse. Med. 2012, 41, 917–926. Int. J. Mol. Sci. 2013, 14 9357 77. Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Staehler, M.; Negrier, S.; Chevreau, C.; Desai, A.A.; Rolland, F.; et al. Sorafenib for treatment of renal cell carcinoma, Final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 2009, 27, 3312–3318. 78. Zhu, A.X. Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 2008, 112, 250–259. 79. Scagliotti, G.V.; Vynnychenko, I.; Park, K.; Ichinose, Y.; Kubota, K.; Blackhall, F.; Pirker, R. Galiulin, R.; Ciuleanu, T.E.; Sydorenko, O.; et al. International, randomized, placebo-controlled, double-blind phase III study of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous non-small-cell lung cancer: MONET1. J. Clin. Oncol. 2012, 30, 2829–2836. 80. Coxon, A.; Bready, J.; Kaufman, S.; Estrada, J.; Osgood, T.; Canon, J.; Wang, L.; Radinsky, R.; Kendall, R.; Hughes, P.; et al. Anti-tumor activity of motesanib in a medullary thyroid cancer model. J. Endocrinol. Invest. 2012, 35, 181–190. 81. Gennigens, C.; Jerusalem, G. Pazopanib (Votrient) in the management of renal cell cancer and soft tissue sarcomas. Rev. Med. Liege 2012, 67, 437–442. 82. Grimm, D.; Wise, P.; Lebert, M.; Richter, P.; Baatout, S. How and why does the proteome respond to microgravity? Expert Rev. Proteomics 2011, 8, 13–27. 83. Pietsch, J.; Bauer, J.; Egli, M.; Infanger, M.; Wise, P.; Ulbrich, C.; Grimm, D. The effects of weightlessness on the human organism and mammalian cells. Curr. Mol. Med. 2011, 11, 350–364. 84. Grimm, D.; Infanger, M.; Westphal, K.; Ulbrich, C.; Pietsch, J.; Kossmehl, P.; Vadrucci, S.; Baatout, S.; Flick, B.; Paul, M.; et al. A delayed type of three-dimensional growth of human endothelial cells under simulated weightlessness. Tissue Eng. Part. A 2009, 15, 2267–2275. 85. Grimm, D.; Bauer, J.; Ulbrich, C.; Westphal, K.; Wehland, M.; Infanger, M.; Aleshcheva, G.; Pietsch, J.; Ghardi, M.; Beck, M.; et al. Different responsiveness of endothelial cells to vascular endothelial growth factor and basic fibroblast growth factor added to culture media under gravity and simulated microgravity. Tissue Eng. Part A 2010, 16, 1559–1573. 86. De Gruttola, V.G.; Clax, P.; DeMets, D.L.; Downing, G.J.; Ellenberg, S.S.; Friedman, L.; Gail, M.H.; Prentice, R.; Wittes, J.; Zeger, S.L. Considerations in the evaluation of surrogate endpoints in clinical trials. Summary of a National Institutes of Health workshop. Control. Clin. Trials 2001, 22, 485–502. 87. Oldenhuis, C.N.; Oosting, S.F.; Gietema, J.A.; de Vries, E.G. Prognostic versus predictive value of biomarkers in oncology. Eur. J. Cancer 2008, 44, 946–953. 88. McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. Statistics Subcommittee of NCI-EORTC Working Group on Cancer Diagnostics. Reporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res. Treat. 2006, 100, 229–235. 89. Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide, IARC CancerBase No. 10 [Internet]. Lyon, France, International Agency for Research on Cancer, 2010. Available online: http://globocan.iarc.fr (accessed on 15 February 2013). 90. Ince, W.L.; Jubb, A.M.; Holden, S.N.; Holmgren, E.B.; Tobin, P.; Sridhar, M.; Hurwitz, H.I.; Kabbinavar, F.; Novotny, W.F.; Hillan, K.J.; et al. Association of k-ras, b-raf, and p53 status with the treatment effect of Bevacizumab. J. Natl. Cancer Inst. 2005, 97, 981–989. Int. J. Mol. Sci. 2013, 14 9358 91. Jubb, A.M.; Hurwitz, H.I.; Bai, W.; Holmgren, E.B.; Tobin, P.; Guerrero, A.S.; Kabbinavar, F.; Holden, S.N.; Novotny, W.F.; Frantz, G.D.; et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of Bevacizumab in metastatic colorectal cancer. J. Clin. Oncol. 2006, 24, 217–227. 92. Cetin, B.; Kaplan, M.A.; Berk, V.; Ozturk, S.C.; Benekli, M.; Isıkdogan, A.; Ozkan, M.; Coskun, U.; Buyukberber, S. Prognostic factors for overall survival in patients with metastatic colorectal carcinoma treated with vascular endothelial growth factor-targeting agents. Asian Pac. J. Cancer Prev. 2012, 13, 1059–1063. 93. Kopetz, S.; Hoff, P.M.; Morris, J.S.; Wolff, R.A.; Eng, C.; Glover, K.Y.; Adinin, R.; Overman, M.J.; Valero, V.; Wen, S.; et al. Phase II trial of infusional fluorouracil, Irinotecan, and Bevacizumab for metastatic colorectal cancer, efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J. Clin. Oncol. 2010, 28, 453–459. 94. Goede, V.; Coutelle, O.; Neuneier, J.; Reinacher-Schick, A.; Schnell, R.; Koslowsky, T.C.; Weihrauch, M.R.; Cremer, B.; Kashkar, H.; Odenthal, M.; et al. Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with Bevacizumab-containing therapy. Br. J. Cancer 2010, 103, 1407–1414. 95. Matsusaka, S.; Suenaga, M.; Mishima, Y.; Takagi, K.; Terui, Y.; Mizunuma, N.; Hatake, K. Circulating endothelial cells predict for response to Bevacizumab-based chemotherapy in metastatic colorectal cancer. Cancer Chemother. Pharmacol. 2011, 68, 763–768. 96. Matsusaka, S.; Mishima, Y.; Suenaga, M.; Terui, Y.; Kuniyoshi, R.; Mizunuma, N.; Hatake, K. Circulating endothelial progenitors and CXCR4-positive circulating endothelial cells are predictive markers for Bevacizumab. Cancer 2011, 117, 4026–4032. 97. Ronzoni, M.; Manzoni, M.; Mariucci, S.; Loupakis, F.; Brugnatelli, S.; Bencardino, K.; Rovati, B.; Tinelli, C.; Falcone, A.; Villa, E.; et al. Circulating endothelial cells and endothelial progenitors as predictive markers of clinical response to Bevacizumab-based first-line treatment in advanced colorectal cancer patients. Ann. Oncol. 2010, 21, 2382–2389. 98. Manzoni, M.; Mariucci, S.; Delfanti, S.; Rovati, B.; Ronzoni, M.; Loupakis, F.; Brugnatelli, S.; Tinelli, C.; Villa, E.; Falcone, A.; et al. Circulating endothelial cells and their apoptotic fraction are mutually independent predictive biomarkers in Bevacizumab-based treatment for advanced colorectal cancer. J. Cancer Res. Clin. Oncol. 2012, 138, 1187–1196. 99. Singh, H.; Pohl, A.; El-Khoueiry, A.; Lurje, G.; Zhang, W.; Yang, D.; Ning, Y.; Shriki, J.; Iqbal, S.; Lenz, H. Use of genetic variants to predict clinical outcome in patients (pts) with metastatic colorectal cancer (mCRC) treated with first-line 5-FU or capecitabine in combination with oxaliplatin and Bevacizumab (FOLFOX/BV or XELOX/BV). J. Clin. Oncol. 2009, 27, 15s. 100. Hansen, T.F.; Christensen, R.D.; Andersen, R.F.; Garm Spindler, K.L.; Johnsson, A.; Jakobsen, A. The predictive value of single nucleotide polymorphisms in the VEGF system to the efficacy of first-line treatment with Bevacizumab plus chemotherapy in patients with metastatic colorectal cancer: Results from the Nordic ACT trial. Int. J. Colorectal Dis. 2012, 27, 715–720. 101. O’Brien, C.A.; Pollett, A.; Gallinger, S.; Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007, 445, 106–110. 102. Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445, 111–115. Int. J. Mol. Sci. 2013, 14 9359 103. Pohl, A.; Zhang, W.; Yang, D.; Lurje, G.; Ning, Y.; Khambata-Ford, S.; Langer, C.; Kahn, M.; Teo, J.L.; Lenz, H.J. Association of CD133 polymorphisms and clinical outcome in metastatic colorectal cancer (mCRC) patients (pts) treated with either first-line 5-FU + Bevacizumab (BV) or second-line Irinotecan (IR)/Cetuximab (CB) or IR alone. J. Clin. Oncol. 2009, 27, 15s. 104. Hurwitz, H.I.; Douglas, P.S.; Middleton, J.P.; Sledge, G.W.; Johnson, D.H.; Reardon, D.A.; Chen, D.; Rosen, O. Analysis of early hypertension and clinical outcome with bevacizumab: results from seven phase iii studies. Oncologist 2013, 18, 273–280. 105. Jubb, A.M.; Harris, A.L. Biomarkers to predict the clinical efficacy of Bevacizumab in cancer. Lancet Oncol. 2010, 11, 1172–1183. 106. Scartozzi, M.; Galizia, E.; Chiorrini, S.; Giampieri, R.; Berardi, R.; Pierantoni, C.; Cascinu, S. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line Bevacizumab. Ann. Oncol. 2009, 20, 227–230. 107. Österlund, P.; Soveri, L.M.; Isoniemi, H.; Poussa, T.; Alanko, T.; Bono, P. Hypertension and overall survival in metastatic colorectal cancer patients treated with Bevacizumab-containing chemotherapy. Br. J. Cancer 2011, 104, 599–604. 108. De Stefano, A.; Carlomagno, C.; Pepe, S.; Bianco, R.; de Placido, S. Bevacizumab-related arterial hypertension as a predictive marker in metastatic colorectal cancer patients. Cancer Chemother. Pharmacol. 2011, 68, 1207–1213. 109. Wehland, M.; Bauer, J.; Infanger, M.; Grimm, D. Target-based anti-angiogenic therapy in breast cancer. Curr. Pharm. Des. 2012, 18, 4244–4257. 110. Burstein, H.J.; Chen, Y.H.; Parker, L.M.; Savoie, J.; Younger, J.; Kuter, I.; Ryan, P.D.; Garber, J.E.; Chen, H.; Campos, S.M.; et al. VEGF as a marker for outcome among advanced breast cancer patients receiving anti-VEGF therapy with Bevacizumab and vinorelbine chemotherapy. Clin. Cancer Res. 2008, 14, 7871–7877. 111. Baar, J.; Silverman, P.; Lyons, J.; Fu, P.; Abdul-Karim, F.; Ziats, N.; Wasman, J.; Hartman, P.; Jesberger, J.; Dumadag, L.; et al. A vasculature-targeting regimen of preoperative docetaxel with or without Bevacizumab for locally advanced breast cancer: Impact on angiogenic biomarkers. Clin. Cancer Res. 2009, 15, 3583–3590. 112. Burstein, H.J.; Elias, A.D.; Rugo, H.S.; Cobleigh, M.A.; Wolff, A.C.; Eisenberg, P.D.; Lehman, M.; Adams, B.J.; Bello, C.L.; DePrimo, S.E.; et al. Phase II study of Sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an Anthracycline and a Taxane. J. Clin. Oncol. 2008, 26, 1810–1816. 113. Calleri, A.; Bono, A.; Bagnardi, A.; Quarna, J.; Mancuso, P.; Rabascio, C.; Dellapasqua, S.; Campagnoli, E.; Shaked, Y.; Goldhirsch, A.; et al. Predictive potential of angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus Bevacizumab. Clin. Cancer Res. 2009, 15, 7652–7657. 114. Schneider, B.P.; Wang, M.; Radovich, M.; Sledge, G.W.; Badve, S.; Thor, A.; Flockhart, D.A.; Hancock, B.; Davidson, N.; Gralow, J.; et al. ECOG 2100. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus Bevacizumab in advanced breast cancer: ECOG 2100. J. Clin. Oncol. 2008, 26, 4672–4678. Int. J. Mol. Sci. 2013, 14 9360 115. Hurwitz, H.; Douglas, P.S.; Middleton, J.P.W.; Sledge, G.; Johnson, D.H.; Reardon, D.A.; Chen, D.; Rosen, O. Analysis of early hypertension (HTN) and clinical outcome with Bevacizumab (BV). J. Clin. Oncol. 2010, 28, 15s. 116. Fountzilas, G.; Kourea, H.P.; Bobos, M.; Televantou, D.; Kotoula, V.; Papadimitriou, C.; Papazisis, K.T.; Timotheadou, E.; Efstratiou, I.; Koutras, A.; et al. Paclitaxel and Bevacizumab as first line combined treatment in patients with metastatic breast cancer, the Hellenic Cooperative Oncology Group experience with biological marker evaluation. Anticancer Res. 2011, 31, 3007–3018. 117. Busnardo, B.; de Vido, D. The epidemiology and etiology of differentiated thyroid carcinoma. Biomed. Pharmacother. 2000, 54, 322–326. 118. Okuieff, P.; Chen, Y.; Maguire, D.J.; Huser, A.K. Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev. 2008, 27, 363–374. 119. Gilliland, F.D.; Hunt, W.C.; Morris, D.M.; Key, C.R. Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973–1991. Cancer 1997, 79,564–573. 120. Durante, C.; Haddy, N.; Baudin, E.; Leboulleux, S.; Hartl, D.; Travagli, J.P.; Caillou, B.; Ricard, M.; Lumbroso, J.D.; de Vathaire, F.; et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma, benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 2006, 91, 2892–2899. 121. Ain, K.B.; Lee, C.; Williams, K.D. Phase II trial of thalidomide for therapy of radioiodine-unresponsive and rapidly progressive thyroid carcinomas. Thyroid 2007, 17, 663–670. 122. Schönberger, J.; Bauer, J.; Spruss, T.; Weber, G.; Chahoud, I.; Eilles, C.; Grimm, D. Establishment and characterization of the follicular thyroid carcinoma cell line ML-1. J. Mol. Med. 2000, 78, 102–110. 123. Schoenberger, J.; Grimm, D.; Kossmehl, P.; Infanger, M.; Kurth, E.; Eilles, C. Effects of PTK787/ZK222584, a tyrosine kinase inhibitor, on the growth of a poorly differentiated thyroid carcinoma, an animal study. Endocrinology 2004, 145, 1031–1038. 124. Niedzwiecki, S.; Stepien, T.; Kopec, K.; Kuzdak, K.; Komorowski, J.; Krupinski, R.; Stepien, H. Angiopoietin 1 (Ang-1), angiopoietin 2 (Ang-2) and Tie-2 (a receptor tyrosine kinase) concentrations in peripheral blood of patients with thyroid cancers. Cytokine 2006, 36, 291–295. 125. Liang, H.; Zhong, Y.; Luo, Z.; Huang, Y.; Lin, H.; Zhan, S.; Xie, K.; Li, Q.Q. Diagnostic value of 16 cellular tumor markers for metastatic thyroid cancer, an immunohistochemical study. Anticancer Res. 2011, 31, 3433–3440. 126. Antonelli, A.; Fallahi, P.; Ferrari, S.M.; Ruffilli, I.; Santini, F.; Minuto, M.; Galleri, D.; Miccoli, P. New targeted therapies for thyroid cancer. Curr. Genomics 2011, 12, 626–631. 127. Schlumberger, M.J.; Elisei, R.; Bastholt, L.; Wirth, L.J.; Martins, R.G.; Locati, L.D.; Jarzab, B.; Pacini, F.; Daumerie, C.; Droz, J.P.; et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J. Clin. Oncol. 2009, 27, 3794–3801. 128. Pennell, N.A.; Daniels, G.H.; Haddad, R.I.; Ross, D.S.; Evans, T.; Wirth, L.J.; Fidias, P.H.; Temel, J.S.; Gurubhagavatula, S.; Heist, R.S.; et al. A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid 2008, 18, 317–323. Int. J. Mol. Sci. 2013, 14 9361 129. Sherman, S.I.; Wirth, L.J.; Droz, J.P.; Hofmann, M.; Bastholt, L.; Martins, R.G.; Licitra, L.; Eschenberg, M.J.; Sun, Y.N.; Juan, T.; et al. Motesanib Thyroid Cancer Study Group. Motesanib diphosphate in progressive differentiated thyroid cancer. N. Engl. J. Med. 2008, 359, 31–42. 130. Kloos, R.T.; Ringel, M.D.; Knopp, M.V.; Hall, N.C.; King, M.; Stevens, R.; Liang, J.; Wakely, P.E., Jr.; Vasko, V.V.; Saji, M.; et al. Phase II trial of sorafenib in metastatic thyroid cancer. J. Clin. Oncol. 2009, 27, 1675–1684. 131. Cohen, E.E.; Rosen, L.S.; Vokes, E.E.; Kies, M.S.; Forastiere, A.A.; Worden, F.P.; Kane, M.A.; Sherman, E.; Kim, S.; Bycott, P.; et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer, results from a phase II study. J. Clin. Oncol. 2008, 26, 4708–4713. 132. Wells, S.A., Jr.; Gosnell, J.E.; Gagel, R.F.; Moley, J.; Pfister, D.; Sosa, J.A.; Skinner, M.; Krebs, A.; Vasselli, J.; Schlumberger, M. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J. Clin. Oncol. 2010, 28, 767–772. 133. Schneider, T.C.; Abdulrahman, R.M.; Corssmit, E.P.; Morreau, H.; Smit, J.W.; Kapiteijn, E. Long-term analysis of the efficacy and tolerability of sorafenib in advanced radio-iodine refractory differentiated thyroid carcinoma, final results of a phase II trial. Eur. J. Endocrinol. 2012, 167, 643–650. 134. Broutin, S.; Ameur, N.; Lacroix, L.; Robert, T.; Petit, B.; Oumata, N.; Talbot, M.; Caillou, B.; Schlumberger, M.; Dupuy, C.; et al. Identification of soluble candidate biomarkers of therapeutic response to sunitinib in medullary thyroid carcinoma in preclinical models. Clin. Cancer Res. 2011, 17, 2044–2054. 135. Grosse, J.; Wehland, M.; Pietsch, J.; Schulz, H.; Saar, K.; Hübner, N.; Eilles, C.; Bauer, J.; Abou-El-Ardat, K.; Baatout, S.; et al. Gravity-sensitive signaling drives 3-dimensional formation of multicellular thyroid cancer spheroids. FASEB J. 2012, 26, 5124–5140. 136. Bass, M.B.; Sherman, S.I.; Schlumberger, M.J.; Davis, M.T.; Kivman, L.; Khoo, H.M.; Notari, K.H.; Peach, M.; Hei, Y.J.; Patterson, S.D. Biomarkers as predictors of response to treatment with motesanib in patients with progressive advanced thyroid cancer. J. Clin. Endocrinol. Metab. 2010, 95, 5018–5027. 137. Marotta, V.; Ramundo, V.; Camera, L.; del Prete, M.; Fonti, R.; Esposito, R.; Palmieri, G.; Salvatore, M.; Vitale, M.; Colao, A.; et al. Sorafenib in advanced iodine-refractory differentiated thyroid cancer, efficacy, safety and exploratory analysis of role of serum thyroglobulin and FDG-PET. Clin. Endocrinol. 2012, 78, 760–767. 138. Cabanillas, M.E.; Waguespack, S.G.; Bronstein, Y.; Williams, M.D.; Feng, L.; Hernandez, M.; Lopez, A.; Sherman, S.I.; Busaidy, N.L. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer, the M. D. Anderson experience. J. Clin. Endocrinol. Metab. 2010, 95, 2588–2595. 139. Lee, E.K.; Chung, K.W.; Min, H.S.; Kim, T.S.; Kim, T.H.; Ryu, J.S.; Jung, Y.S.; Kim, S.K.; Lee, Y.J. Preoperative serum thyroglobulin as a useful predictive marker to differentiate follicular thyroid cancer from benign nodules in indeterminate nodules. J. Korean Med. Sci. 2012, 27, 1014–1018. 140. Yim, J.H.; Kim, E.Y.; Bae Kim, W.; Kim, W.G.; Kim, T.Y.; Ryu, J.S.; Gong, G.; Hong, S.J.; Yoon, J.H.; Shong, Y.K. Long-term consequence of elevated thyroglobulin in differentiated thyroid cancer. Thyroid 2013, 23, 58–63. Int. J. Mol. Sci. 2013, 14 9362 141. Webb, R.C.; Howard, R.S.; Stojadinovic, A.; Gaitonde, D.Y.; Wallace, M.K.; Ahmed, J.; Burch, H.B. The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: A meta-analysis involving 3947 patients. J. Clin. Endocrinol. Metab. 2012, 97, 2754–2763. 142. Shaik, S.; Nucera, C.; Inuzuka, H.; Gao, D.; Garnaas, M.; Frechette, G.; Harris, L.; Wan, L.; Fukushima, H.; Husain, A.; et al. SCF(β-TRCP) suppresses angiogenesis and thyroid cancer cell migration by promoting ubiquitination and destruction of VEGF receptor 2. J. Exp. Med. 2012, 209, 1289–1307. 143. Zerilli, M.; Zito, G.; Martorana, A.; Pitrone, M.; Cabibi, D.; Cappello, F.; Giordano, C.; Rodolico, V. BRAF(V600E) mutation influences hypoxia-inducible factor-1alpha expression levels in papillary thyroid cancer. Mod. Pathol. 2010, 23, 1052–1060. 144. Bottos, A.; Martini, M.; di Nicolantonio, F.; Comunanza, V.; Maione, F.; Minassi, A.; Appendino, G.; Bussolino, F.; Bardelli, A. Targeting oncogenic serine/threonine-protein kinase BRAF in cancer cells inhibits angiogenesis and abrogates hypoxia. Proc. Natl. Acad. Sci. USA 2012, 109, E353–E359. 145. Grimm, D.; Bauer, J.; Pietsch, J.; Infanger, M.; Eucker, J.; Eilles, C.; Schoenberger, J. Diagnostic and therapeutic use of membrane proteins in cancer cells. Curr. Med. Chem. 2011, 18, 176–190. 146. Pietsch, J.; Kussian, R.; Sickmann, A.; Bauer, J.; Weber, G.; Nissum, M.; Westphal, K.; Egli, M.; Grosse, J.; Schönberger, J.; et al. Application of free-flow IEF to identify protein candidates changing under microgravity conditions. Proteomics 2010, 10, 904–913. 147. Pietsch, J.; Sickmann, A.; Weber, G.; Bauer, J.; Egli, M.; Wildgruber, R.; Infanger, M.; Grimm, D. A proteomic approach to analysing spheroid formation of two human thyroid cell lines cultured on a random positioning machine. Proteomics 2011, 11, 2095–2104. 148. Pietsch, J.; Sickmann, A.; Weber, G.; Bauer, J.; Egli, M.; Wildgruber, R.; Infanger, M.; Grimm, D. Metabolic enzyme diversity in different human thyroid cell lines and their sensitivity to gravitational forces. Proteomics 2012, 12, 2539–2546. 149. Pietsch, J.; Riwaldt, S.; Bauer, J.; Sickmann, A.; Weber, G.; Grosse, J.; Infanger, M.; Eilles, C.; Grimm, D. Interaction of proteins identified in human thyroid cells. Int. J. Mol. Sci. 2013, 14, 1164–1178. 150. Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008, GLOBOCAN 2008. Int. J. Cancer 2010, 15, 2893–2917 151. Bukowski, R.M.; Eisen, T.; Szczylik, C.; Stadler, W.M.; Simantov, R.; Shan, M.; Elting, J.; Pena, C.; Escudier, B. Final results of the randomized phase III trial of sorafenib in advanced renal cell carcinoma, Survival and biomarker analysis. J. Clin. Oncol. 2007, 25, 15s. 152. Deprimo, S.E.; Bello, C.L.; Smeraglia, J.; Baum, C.M.; Spinella, D.; Rini, B.I.; Michaelson, M.D.; Motzer, R.J. Circulating protein biomarkers of pharmacodynamic activity of Sunitinib in patients with metastatic renal cell carcinoma, Modulation of VEGF and VEGF-related proteins. J. Transl. Med. 2007, 5, 32. 153. Genega, E.M.; Ghebremichael, M.; Najarian, R.; Fu, Y.; Wang, Y.; Argani, P.; Grisanzio, C.; Signoretti, S. Carbonic anhydrase IX expression in renal neoplasms, Correlation with tumor type and grade. Am. J. Clin. Pathol. 2010, 134, 873–879. Int. J. Mol. Sci. 2013, 14 9363 154. Porta, C.; Paglino, C.; de Amici, M.; Quaglini, S.; Sacchi, L.; Imarisio, I.; Canipari, C. Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving Sunitinib. Kidney Int. 2010, 77, 809–815. 155. Kjeldsen, L.; Johnsen, A.H.; Sengeløv, H.; Borregaard, N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem. 1993, 268, 10425–10432. 156. Pantuck, A.J.; Fang, Z.; Liu, X.; Seligson, D.B.; Horvath, S.; Leppert, J.T.; Belldegrun, A.S.; Figlin, R.A. Gene expression and tissue microarray analysis of interleukin-2 complete responders in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2005, 23, 15s. 157. Atkins, M.; Regan, M.; McDermott, D.; Mier, J.; Stanbridge, E.; Youmans, A.; Febbo, P.; Upton, M.; Lechpammer, M.; Signoretti, S. Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin. Cancer Res. 2005, 11, 3714–3721. 158. Klatte, T.; Seligson, D.B.; Riggs, S.B.; Leppert, J.T.; Berkman, M.K.; Kleid, M.D.; Yu, H.; Kabbinavar, F.F.; Pantuck, A.J.; Belldegrun, A.S. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin. Cancer Res. 2007, 13, 7388–7393. 159. Patel, P.H.; Chadalavada, R.S.; Ishill, N.M.; Patil, S.; Reuter, V.E.; Motzer, R.J.; Chaganti, R.S. Hypoxia-inducible factor (HIF) 1a and 2a levels in cell lines and human tumor predicts response to Sunitinib in renal cell carcinoma (RCC). J. Clin. Oncol. 2008, 26, 15s. 160. Hoffmann, N.E.; Sheinin, Y.; Lohse, C.M.; Parker, A.S.; Leibovich, B.C.; Jiang, Z.; Kwon, E.D. External validation of IMP3 expression as an independent prognostic marker for metastatic progression and death for patients with clear cell renal cell carcinoma. Cancer 2008, 112, 1471–1479. 161. Thompson, R.H.; Kuntz, S.M.; Leibovich, B.C.; Dong, H.; Lohse, C.M.; Webster, W.S.; Sengupta, S.; Frank, I.; Parker, A.S.; Zincke, H.; et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006, 66, 3381–3385. 162. Zurita, A.J.; Jonasch, E.; Wang, X.; Khajavi, M.; Yan, S.; Du, D.Z.; Xu, L.; Herynk, M.H.; McKee, K.S.; Tran, H.T.; et al. A cytokine and angiogenic factor (CAF) analysis in plasma for selection of sorafenib therapy in patients with metastatic renal cell carcinoma. Ann. Oncol. 2012, 23, 46–52. 163. Tran, H.T.; Liu, Y.; Zurita, A.J.; Lin, Y.; Baker-Neblett, K.L.; Martin, A.M.; Figlin, R.A.; Hutson, T.E.; Sternberg, C.N.; Amado, R.G.; et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: A retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol. 2012, 13, 827–837. 164. Purdue, M.P.; Johansson, M.; Zelenika, D.; Toro, J.R.; Scelo, G.; Moore, L.E.; Prokhortchouk, E.; Wu, X.; Kiemeney, L.A.; Gaborieau, V.; et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 2011, 43, 60–65. 165. Wu, X.; Scelo, G.; Purdue, M.P.; Rothman, N.; Johansson, M.; Ye, Y.; Wang, Z.; Zelenika, D.; Moore, L.E.; Wood, C.G.; et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum. Mol. Genet. 2012, 21, 456–462. Int. J. Mol. Sci. 2013, 14 9364 166. Xu, C.F.; Bing, N.X.; Ball, H.A.; Rajagopalan, D.; Sternberg, C.N.; Hutson, T.E.; de Souza, P.; Xue, Z.G.; McCann, L.; King, K.S.; et al. Pazopanib efficacy in renal cell carcinoma, evidence for predictive genetic markers in angiogenesis related and exposure-related genes. J. Clin. Oncol. 2011, 29, 2557–2564. 167. Huang, D.; Ding, Y.; Zhou, M.; Rini, B.I.; Petillo, D.; Qian, C.N.; Kahnoski, R.; Futreal, P.A.; Furge, K.A.; Teh, B.T. Interleukin-8 mediates resistance to anti-angiogenic agent Sunitinib in renal cell carcinoma. Cancer Res. 2010, 70, 1063–1071. 168. Climent, M.A.; Arranz, J.A.; Gallardo, E.; Puente, J.; Bellmunt, J.; Mellado, B.; Martínez, E.; Moreno, F.; Font, A.; Robledo, M.; et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line Sunitinib, a multicentre, observational, prospective study. Lancet Oncol. 2011, 12, 1143–1150. 169. Van der Veldt, A.A.; Eechoute, K.; Gelderblom, H.; Gietema, J.; Guchelaar, H.J.; van Erp, N.P.; van den Eertwegh, A.J.; Haanen, J.B.; Mathijssen, R.H.; Wessels, J.A. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with Sunitinib. Clin. Cancer Res. 2011, 17, 620–629. 170. Brannon, A.R.; Reddy, A.; Seiler, M.; Arreola, A.; Moore, D.T.; Pruthi, R.S.; Wallen, E.M.; Nielsen, M.E.; Liu, H.; Nathanson, K.L.; et al. Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 2010, 1, 152–163. 171. Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer statistics, 2009. CA Cancer J. Clin. 2009, 59, 225–249. 172. Ferlay, J.; Autier, P.; Boniol, M.; Heanue, M.; Colombet, M.; Boyle, P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 2007, 18, 581–592. 173. Bradford, T.J.; Tomlins, S.A.; Wang, X.; Chinnaiyan, A.M. Molecular markers of prostate cancer. Urol. Oncol. 2006, 24, 538–551. 174. Lambrechts, D.; Lenz, H.J.; de Haas, S.; Carmeliet, P.; Scherer, S.J. Markers of response for the antiangiogenic agent bevacizumab. J. Clin. Oncol. 2013, 31, 1219–1230. 175. François, P.; Bertos, N.; Laferrière, J.; Sadekova, S.; Souleimanova, M.; Zhao, H.; Finak, G.; Meterissian, S.; Hallett, M.T.; Park, M. Gene-expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes. Breast Cancer Res. 2012, 14, R120. 176. Carpi, A.; Mechanick, J.I.; Saussez, S.; Nicolini, A. Thyroid tumor marker genomics and proteomics, diagnostic and clinical implications. J. Cell Physiol. 2010, 224, 612–619. 177. Pavlou, M.P.; Diamandis, E.P. The cancer cell secretome, a good source for discovering biomarkers? J. Proteomics 2010, 73, 1896–1906. © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
International Journal of Molecular Sciences – Pubmed Central
Published: Apr 29, 2013
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.