Access the full text.
Sign up today, get DeepDyve free for 14 days.
B. Scheven, E. Haas, A. Wassenaar, P. Nijweide (1986)
Differentiation kinetics of osteoclasts in the periosteum of embryonic bones in vivo and in vitroThe Anatomical Record, 214
Zhao-Qi Wang, C. Ovitt, A. Grigoriadis, U. Möhle-Steinlein, U. Rüther, E. Wagner (1992)
Bone and haematopoietic defects in mice lacking c-fosNature, 360
T. Suda, N. Takahashi, T. Martin (1992)
Modulation of osteoclast differentiation.Endocrine reviews, 13 1
A. Naito, S. Azuma, Sakae Tanaka, T. Miyazaki, S. Takaki, K. Takatsu, K. Nakao, Kenji Nakamura, M. Katsuki, Tadashi Yamamoto, Jun-ichiro Inoue (1999)
Severe osteopetrosis, defective interleukin‐1 signalling and lymph node organogenesis in TRAF6‐deficient miceGenes to Cells, 4
B. Wong, J. Rho, J. Arron, E. Robinson, J. Orlinick, M. Chao, S. Kalachikov, Eftihia Cayani, F. Bartlett, W. Frankel, Soo Lee, Yongwon Choi (1997)
TRANCE Is a Novel Ligand of the Tumor Necrosis Factor Receptor Family That Activates c-Jun N-terminal Kinase in T Cells*The Journal of Biological Chemistry, 272
John Lee, S. Kumar, D. Griswold, D. Underwood, B. Votta, J. Adams (2000)
Inhibition of p38 MAP kinase as a therapeutic strategy.Immunopharmacology, 47 2-3
M. Cobb, E. Goldsmith (1995)
How MAP Kinases Are Regulated (*)The Journal of Biological Chemistry, 270
H. Yoshida, S. Hayashi, T. Kunisada, M. Ogawa, S. Nishikawa, H. Okamura, T. Sudo, L. Shultz, S. Nishikawa (1990)
The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor geneNature, 345
T. Chambers, J. Owens, G. Hattersley, P. Jat, M. Noble (1993)
Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse.Proceedings of the National Academy of Sciences of the United States of America, 90 12
T. Suda, E. Jimi, I. Nakamura, N. Takahashi (1997)
Role of 1 alpha,25-dihydroxyvitamin D3 in osteoclast differentiation and function.Methods in enzymology, 282
Sanjay Kumar, B. Votta, D. Rieman, A. Badger, M. Gowen, John Lee (2001)
IL‐1‐ and TNF‐induced bone resorption is mediated by p38 mitogen activated protein kinase *Journal of Cellular Physiology, 187
M. Matsumoto, T. Sudo, Tamio Saito, Hiroyuki Osada, M. Tsujimoto (2000)
Involvement of p38 Mitogen-activated Protein Kinase Signaling Pathway in Osteoclastogenesis Mediated by Receptor Activator of NF-κB Ligand (RANKL)*The Journal of Biological Chemistry, 275
R. Felix, M. Cecchini, H. Fleisch (1990)
Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse.Endocrinology, 127 5
Chambers (1993)
Generation of osteoclast-inductive and osteoclastogenic cell lines from the H-2KbtsA58 transgenic mouse.Proc Natl Acad Sci USA, 90
N. Udagawa, N. Takahashi, H. Yasuda, A. Mizuno, K. Itoh, Y. Ueno, T. Shinki, M. Gillespie, T. Martin, K. Higashio, T. Suda (2000)
Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function.Endocrinology, 141 9
K. Hoshino, O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa, Y. Takeda, K. Takeda, S. Akira (1999)
Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product.Journal of immunology, 162 7
V. Iotsova, J. Caamaño, J. Loy, Yi Yang, A. Lewin, R. Bravo (1997)
Osteopetrosis in mice lacking NF-κB1 and NF-κB2Nature Medicine, 3
N. Takahashi, T. Akatsu, N. Udagawa, T. Sasaki, Akira Yamaguchi, J. Moseley, T. Martin, T. Suda (1988)
Osteoblastic cells are involved in osteoclast formation.Endocrinology, 123 5
N. Bucay, I. Sarosi, C. Dunstan, S. Morony, J. Tarpley, C. Capparelli, S. Scully, H. Tan, Wei-wei Xu, D. Lacey, W. Boyle, W. Simonet (1998)
osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification.Genes & development, 12 9
K. Suda, J. Woo, M. Takami, P. Sexton, K. Nagai (2002)
Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF‐α, IL‐1, and RANKLJournal of Cellular Physiology, 190
T. Chambers (2000)
Regulation of the differentiation and function of osteoclastsThe Journal of Pathology, 192
John Lee, J. Laydon, P. Mcdonnell, T. Gallagher, Sanjay Kumar, D. Green, D. Mcnulty, Mary Blumenthal, J. Keys, Scott vatter, J. Strickler, M. McLaughlin, I. Siemens, S. Fisher, G. Livi, J. White, J. Adams, P. Young (1994)
A protein kinase involved in the regulation of inflammatory cytokine biosynthesisNature, 372
M. Lomaga, W. Yeh, I. Sarosi, G. Duncan, C. Furlonger, A. Ho, S. Morony, C. Capparelli, Gwyneth Van, S. Kaufman, Annette Heiden, A. Itié, A. Wakeham, W. Khoo, Takehiko Sasaki, Z. Cao, J. Penninger, C. Paige, D. Lacey, C. Dunstan, W. Boyle, D. Goeddel, T. Mak (1999)
TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling.Genes & development, 13 8
Y. Azuma, K. Kaji, Rei Katogi, S. Takeshita, A. Kudo (2000)
Tumor Necrosis Factor-α Induces Differentiation of and Bone Resorption by Osteoclasts*The Journal of Biological Chemistry, 275
H. Tokuda, O. Kozawa, M. Miwa, T. Uematsu (2001)
p38 mitogen-activated protein (MAP) kinase but not p44/p42 MAP kinase is involved in prostaglandin E1-induced vascular endothelial growth factor synthesis in osteoblasts.The Journal of endocrinology, 170 3
E. Jimi, I. Nakamura, T. Ikebe, S. Akiyama, N. Takahashi, T. Suda (1998)
Activation of NF-κB Is Involved in the Survival of Osteoclasts Promoted by Interleukin-1*The Journal of Biological Chemistry, 273
S. Teitelbaum (2000)
Bone resorption by osteoclasts.Science, 289 5484
O. Kozawa, H. Kawamura, H. Matsuno, T. Uematsu (2000)
p38 MAP kinase is involved in the signalling of sphingosine in osteoblasts: sphingosine inhibits prostaglandin F(2alpha)-induced phosphoinositide hydrolysis.Cellular signalling, 12 7
L. Galibert, Mark Tometsko, Dirk Anderson, D. Cosman, W. Dougall (1998)
The Involvement of Multiple Tumor Necrosis Factor Receptor (TNFR)-associated Factors in the Signaling Mechanisms of Receptor Activator of NF-κB, a Member of the TNFR Superfamily*The Journal of Biological Chemistry, 273
A. Mizuno, N. Amizuka, K. Irie, A. Murakami, N. Fujise, Takeshi Kanno, Yasushi Sato, N. Nakagawa, H. Yasuda, S. Mochizuki, T. Gomibuchi, K. Yano, N. Shima, N. Washida, E. Tsuda, T. Morinaga, K. Higashio, H. Ozawa (1998)
Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin.Biochemical and biophysical research communications, 247 3
G. Franzoso, L. Carlson, L. Xing, L. Poljak, E. Shores, K. Brown, A. Leonardi, T. Tran, B. Boyce, U. Siebenlist (1997)
Requirement for NF-κB in osteoclast and B-cell developmentGenes & Development, 11
T. Koga, T. Nishihara, T. Fujiwara, T. Nisizawa, N. Okahashi, T. Noguchi, S. Hamada (1985)
Biochemical and immunobiological properties of lipopolysaccharide (LPS) from Bacteroides gingivalis and comparison with LPS from Escherichia coliInfection and Immunity, 47
T. Martin, E. Romas, M. Gillespie (1998)
Interleukins in the control of osteoclast differentiation.Critical reviews in eukaryotic gene expression, 8 2
Y. Ishimi, C. Miyaura, C. Jin, T. Akatsu, E. Abe, Y. Nakamura, Akira Yamaguchi, S. Yoshiki, T. Matsuda, T. Hirano (1990)
IL-6 is produced by osteoblasts and induces bone resorption.Journal of immunology, 145 10
E. Jimi, I. Nakamura, L. Dưỡng, T. Ikebe, N. Takahashi, G. Rodan, T. Suda (1999)
Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells.Experimental cell research, 247 1
N. Kobayashi, Y. Kadono, A. Naito, Kunihiro Matsumoto, Tadashi Yamamoto, Sakae Tanaka, J. Inoue (2001)
Segregation of TRAF6‐mediated signaling pathways clarifies its role in osteoclastogenesisThe EMBO Journal, 20
B. Wong, R. Josien, Soo Lee, M. Vologodskaia, R. Steinman, Yongwon Choi (1998)
The TRAF Family of Signal Transducers Mediates NF-κB Activation by the TRANCE Receptor*The Journal of Biological Chemistry, 273
H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, Akihiro Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, T. Suda (1998)
Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.Proceedings of the National Academy of Sciences of the United States of America, 95 7
T. Suda, N. Takahashi, N. Udagawa, E. Jimi, M. Gillespie, T. Martin (1999)
Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families.Endocrine reviews, 20 3
B. Darnay, Jian Ni, Paul Moore, Bharat Aggarwal (1999)
Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif.The Journal of biological chemistry, 274 12
Y. Kong, H. Yoshida, I. Sarosi, H. Tan, E. Timms, C. Capparelli, S. Morony, A. Oliveira-dos-Santos, G. Van, A. Itié, W. Khoo, A. Wakeham, C. Dunstan, D. Lacey, T. Mak, W. Boyle, J. Penninger (1999)
OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesisNature, 397
H. Kodama, A. Yamasaki, Makoto Nose, S. Niida, Y. Ohgame, M. Abe, M. Kumegawa, T. Suda (1991)
Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factorThe Journal of Experimental Medicine, 173
小林 幹一郎 (2002)
Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction
Dirk Anderson, E. Maraskovsky, William Billingsley, W. Dougall, Mark Tometsko, E. Roux, M. Teepe, R. Dubose, D. Cosman, L. Galibert (1997)
A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell functionNature, 390
G. Roodman (1999)
Cell biology of the osteoclast.Experimental hematology, 27 8
S. Qureshi, L. Larivière, G. Leveque, S. Clermont, K. Moore, P. Gros, D. Malo (1999)
Endotoxin-tolerant Mice Have Mutations in Toll-like Receptor 4 (Tlr4)The Journal of Experimental Medicine, 189
Hong-Hee Kim, Da Lee, Jin Shin, Yong Lee, Yoo Jeon, Chae-Heon Chung, Jian Ni, B. Kwon, Z. Lee (1999)
Receptor activator of NF‐κB recruits multiple TRAF family adaptors and activates c‐Jun N‐terminal kinaseFEBS Letters, 443
E. Jimi, S. Akiyama, T. Tsurukai, N. Okahashi, Kanichiro Kobayashi, N. Udagawa, T. Nishihara, N. Takahashi, T. Suda (1999)
Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function.Journal of immunology, 163 1
T. Akatsu, T. Tamura, N. Takahashi, N. Udagawa, S. Tanaka, T. Sasaki, A. Yamaguchi, N. Nagata, T. Suda (1992)
Preparation and characterization of a mouse osteoclast‐like multinucleated cell populationJournal of Bone and Mineral Research, 7
A. Grigoriadis, Zhaohui Wang, M. Cecchini, W. Hofstetter, R. Felix, H. Fleisch, E. Wagner (1994)
c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling.Science, 266 5184
A. Poltorak, Xiaolong He, I. Smirnova, Mu-ya Liu, C. Huffel, Xin Du, D. Birdwell, Erica Alejos, Maria Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, Betsy Layton, B. Beutler (1998)
Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene.Science, 282 5396
A. Whitmarsh, R. Davis (1996)
Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathwaysJournal of Molecular Medicine, 74
AbstractReceptor activator of nuclear factor-κB ligand (RANKL)-induced signals play critical roles in osteoclast differentiation and function. SB203580, an inhibitor of p38 MAPK, blocked osteoclast formation induced by 1α,25-dihydroxyvitamin D3 and prostaglandin E2 in cocultures of mouse osteoblasts and bone marrow cells. Nevertheless, SB203580 showed no inhibitory effect on RANKL expression in osteoblasts treated with 1α,25-dihydroxyvitamin D3 and prostaglandin E2. RANKL-induced osteoclastogenesis in bone marrow cultures was inhibited by SB203580, suggesting a direct effect of SB203580 on osteoclast precursors, but not on osteoblasts, in osteoclast differentiation. However, SB203580 inhibited neither the survival nor dentine-resorption activity of osteoclasts induced by RANKL. Lipopolysaccharide (LPS), IL-1, and TNFα all stimulated the survival of osteoclasts, which was not inhibited by SB203580. Phosphorylation of p38 MAPK was induced by RANKL, IL-1, TNFα, and LPS in osteoclast precursors but not in osteoclasts. LPS stimulated phosphorylation of MAPK kinase 3/6 and ATF2, upstream and downstream signals of p38 MAPK, respectively, in osteoclast precursors but not in osteoclasts. Nevertheless, LPS induced degradation of IκB and phosphorylation of ERK in osteoclasts as well as in osteoclast precursors. These results suggest that osteoclast function is induced through a mechanism independent of p38 MAPK-mediated signaling.
Endocrinology – Oxford University Press
Published: Aug 1, 2002
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.