Access the full text.
Sign up today, get DeepDyve free for 14 days.
U. Khan, A. O’Neill, M. Lotya, S. De, J. Coleman (2010)
High-concentration solvent exfoliation of graphene.Small, 6 7
M. El‐Kady, Veronica Strong, S. Dubin, R. Kaner (2012)
Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical CapacitorsScience, 335
Y. Mua, T. Quickenden (1996)
Power Conversion Efficiency, Electrode Separation, and Overpotential in the Ferricyanide/Ferrocyanide Thermogalvanic CellJournal of The Electrochemical Society, 143
J. Nugent, K. Santhanam, and Rubio, P. Ajayan (2001)
Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle ElectrodesNano Letters, 1
T. Quickenden, C. Vernon (1986)
Thermogalvanic conversion of heat to electricitySolar Energy, 36
(2008)
Niraj, Z.-T
C. Vining (2009)
An inconvenient truth about thermoelectrics.Nature materials, 8 2
Peter Hall, E. Bain (2008)
Energy-storage technologies and electricity generationEnergy Policy, 36
M. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio (2005)
Raman spectroscopy of carbon nanotubesPhysics Reports, 409
S. Bergin, V. Nicolosi, P. Streich, S. Giordani, Zhenyu Sun, A. Windle, P. Ryan, N. Niraj, Zhi‐Tao Wang, L. Carpenter, W. Blau, J. Boland, J. Hamilton, J. Coleman (2008)
Towards Solutions of Single‐Walled Carbon Nanotubes in Common SolventsAdvanced Materials, 20
Qian Zhang, Shaojun Yang, Jing Zhang, Ling Zhang, P. Kang, Jinghong Li, Jingwei Xu, Hua Zhou, Xi-ming Song (2011)
Fabrication of an electrochemical platform based on the self-assembly of graphene oxide–multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysisNanotechnology, 22
Sungjin Park, D. Dikin, S. Nguyen, R. Ruoff (2009)
Graphene Oxide Sheets Chemically Cross-Linked by PolyallylamineJournal of Physical Chemistry C, 113
H. Hertz, S. Ratkje (1989)
Theory of ThermocellsJournal of The Electrochemical Society, 136
(2008)
Schematic of a thermocell using the ferri/ferrocyanide redox couple
J. Randles (1947)
Kinetics of rapid electrode reactionsDiscussions of The Faraday Society, 1
T. Quickenden, Y. Mua (1995)
A Review of Power Generation in Aqueous Thermogalvanic CellsJournal of The Electrochemical Society, 142
T. Quickenden, Y. Mua (1995)
The Power Conversion Efficiencies of a Thermogalvanic Cell Operated in Three Different OrientationsJournal of The Electrochemical Society, 142
H. Schniepp, Je-Luen Li, Michael McAllister, Hiroaki Sai, M. Herrera-Alonso, D. Adamson, R. Prud’homme, R. Car, D. Saville, I. Aksay (2006)
Functionalized single graphene sheets derived from splitting graphite oxide.The journal of physical chemistry. B, 110 17
Longhua Tang, Ying Wang, Yueming Li, Hongbin Feng, Jin Lu, Jinghong Li (2009)
Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet FilmsAdvanced Functional Materials, 19
C. Salzmann, Simon Llewellyn, G. Tobias, Michael Ward, Y. Huh, Malcolm Green (2007)
The Role of Carboxylated Carbonaceous Fragments in the Functionalization and Spectroscopy of a Single‐Walled Carbon‐Nanotube MaterialAdvanced Materials, 19
(2001)
Electrochamical Methods-Fundamentals and Applications
M. Pacios, M. Valle, J. Bartrolí, M. Esplandiu (2008)
Electrochemical behavior of rigid carbon nanotube composite electrodesJournal of Electroanalytical Chemistry, 619
T. Kang, S. Fang, M. Kozlov, Carter Haines, Na Li, Yong Kim, Yongsheng Chen, R. Baughman (2012)
Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy HarvestersAdvanced Functional Materials, 22
Peter Hall, M. Mirzaeian, S. Fletcher, F. Sillars, Anthony Rennie, Gbolahan Shitta-Bey, Grant Wilson, A. Cruden, R. Carter (2010)
Energy storage in electrochemical capacitors: designing functional materials to improve performanceEnergy and Environmental Science, 3
Haiqun Chen, M. Müller, K. Gilmore, G. Wallace, Dan Li (2008)
Mechanically Strong, Electrically Conductive, and Biocompatible Graphene PaperAdvanced Materials, 20
R. Nicholson (1965)
Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics.Analytical Chemistry, 37
Renchong Hu, B. Cola, N. Haram, J. Barisci, Sergey Lee, S. Stoughton, G. Wallace, C. Too, Michael Thomas, Adrian Gestos, M. Cruz, J. Ferraris, A. Zakhidov, R. Baughman (2010)
Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.Nano letters, 10 3
D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Zhengzong Sun, A. Slesarev, L. Alemany, W. Lu, J. Tour (2010)
Improved synthesis of graphene oxide.ACS nano, 4 8
C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko, A. Ferrari (2008)
Raman spectroscopy of graphene edges.Nano letters, 9 4
M. Romano, Sanjeev Gambhir, J. Razal, Adrian Gestos, G. Wallace, Jun Chen (2012)
Novel carbon materials for thermal energy harvestingJournal of Thermal Analysis and Calorimetry, 109
Y. Kuzminskii, V. Zasukha, G. Kuzminskaya (1994)
Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cellsJournal of Power Sources, 52
By controlling the SWNT‐rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.
Advanced Materials – Wiley
Published: Dec 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.