Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

A biohybrid synapse with neurotransmitter-mediated plasticity

A biohybrid synapse with neurotransmitter-mediated plasticity Brain-inspired computing paradigms have led to substantial advances in the automation of visual and linguistic tasks by emulating the distributed information processing of biological systems1. The similarity between artificial neural networks (ANNs) and biological systems has inspired ANN implementation in biomedical interfaces including prosthetics2 and brain-machine interfaces3. While promising, these implementations rely on software to run ANN algorithms. Ultimately, it is desirable to build hardware ANNs4,5 that can both directly interface with living tissue and adapt based on biofeedback6,7. The first essential step towards biologically integrated neuromorphic systems is to achieve synaptic conditioning based on biochemical signalling activity. Here, we directly couple an organic neuromorphic device with dopaminergic cells to constitute a biohybrid synapse with neurotransmitter-mediated synaptic plasticity. By mimicking the dopamine recycling machinery of the synaptic cleft, we demonstrate both long-term conditioning and recovery of the synaptic weight, paving the way towards combining artificial neuromorphic systems with biological neural networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Materials Springer Journals

Loading next page...
 
/lp/springer-journals/a-biohybrid-synapse-with-neurotransmitter-mediated-plasticity-Pl2Km0vi48

References (40)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature Limited 2020
ISSN
1476-1122
eISSN
1476-4660
DOI
10.1038/s41563-020-0703-y
Publisher site
See Article on Publisher Site

Abstract

Brain-inspired computing paradigms have led to substantial advances in the automation of visual and linguistic tasks by emulating the distributed information processing of biological systems1. The similarity between artificial neural networks (ANNs) and biological systems has inspired ANN implementation in biomedical interfaces including prosthetics2 and brain-machine interfaces3. While promising, these implementations rely on software to run ANN algorithms. Ultimately, it is desirable to build hardware ANNs4,5 that can both directly interface with living tissue and adapt based on biofeedback6,7. The first essential step towards biologically integrated neuromorphic systems is to achieve synaptic conditioning based on biochemical signalling activity. Here, we directly couple an organic neuromorphic device with dopaminergic cells to constitute a biohybrid synapse with neurotransmitter-mediated synaptic plasticity. By mimicking the dopamine recycling machinery of the synaptic cleft, we demonstrate both long-term conditioning and recovery of the synaptic weight, paving the way towards combining artificial neuromorphic systems with biological neural networks.

Journal

Nature MaterialsSpringer Journals

Published: Sep 15, 2020

There are no references for this article.