Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Large-scale neuromorphic computing systems

Large-scale neuromorphic computing systems Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neural Engineering IOP Publishing

Large-scale neuromorphic computing systems

Journal of Neural Engineering , Volume 13 (5): 14 – Oct 1, 2016

Loading next page...
 
/lp/iop-publishing/large-scale-neuromorphic-computing-systems-Z700mAPowI

References (30)

Copyright
Copyright © 2016 IOP Publishing Ltd
ISSN
1741-2560
eISSN
1741-2552
DOI
10.1088/1741-2560/13/5/051001
pmid
27529195
Publisher site
See Article on Publisher Site

Abstract

Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

Journal

Journal of Neural EngineeringIOP Publishing

Published: Oct 1, 2016

There are no references for this article.