Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Volkow, J. Fowler, Gene-Jack Wang, F. Telang, J. Logan, Christopher Wong, Jim Ma, K. Pradhan, H. Benveniste, J. Swanson (2008)
Methylphenidate Decreased the Amount of Glucose Needed by the Brain to Perform a Cognitive TaskPLoS ONE, 3
D. Barros, C. McGinnity, L. Rosso, R. Heckemann, O. Howes, D. Brooks, J. Duncan, F. Turkheimer, M. Koepp, A. Hammers (2014)
Test–retest reproducibility of cannabinoid-receptor type 1 availability quantified with the PET ligand [11C]MePPEPNeuroimage, 97
M. Solanto (1998)
Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integrationBehavioural Brain Research, 94
P. Manza, D. Tomasi, N. Volkow (2017)
Subcortical Local Functional Hyperconnectivity in Cannabis Dependence.Biological psychiatry. Cognitive neuroscience and neuroimaging, 3 3
L. Iversen (2003)
Cannabis and the brain.Brain : a journal of neurology, 126 Pt 6
N. Volkow, N. Volkow, Gene-Jack Wang, J. Fowler, J. Logan, S. Gatley, R. Hitzemann, A. Chen, S. Dewey, N. Pappas (1997)
Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjectsNature, 386
J. O’Muircheartaigh, S. Keller, G. Barker, M. Richardson (2015)
White Matter Connectivity of the Thalamus Delineates the Functional Architecture of Competing Thalamocortical SystemsCerebral Cortex (New York, NY), 25
N. Volkow, J. Fowler, Gene-Jack Wang, Y-S. Ding, S. Gatley (2002)
Mechanism of action of methylphenidate: Insights from PET imaging studiesJournal of Attention Disorders, 6
Z. Cho, Y. Son, H. Kim, Nam-Beom Kim, Eun-Jung Choi, Sang-Yoon Lee, Je-Geun Chi, Chan-Woong Park, Young-Bo Kim, S. Ogawa (2011)
Observation of Glucose Metabolism in the Thalamic Nuclei by Fusion PET/MRIThe Journal of Nuclear Medicine, 52
J. Schmahmann (2010)
The Role of the Cerebellum in Cognition and Emotion: Personal Reflections Since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical Evolution from Theory to TherapyNeuropsychology Review, 20
N. Volkow, N. Volkow, Yu-Shin Ding, J. Fowler, Gene-Jack Wang, J. Logan, J. Gatley, S. Dewey, Charles Ashby, Jeffrey Liebermann, R. Hitzemann, A. Wolf (1995)
Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain.Archives of general psychiatry, 52 6
P. O’Donnell, A. Lavin, L. Enquist, A. Grace, J. Card (1997)
Interconnected Parallel Circuits between Rat Nucleus Accumbens and Thalamus Revealed by Retrograde Transynaptic Transport of Pseudorabies VirusThe Journal of Neuroscience, 17
Abigail Clark, F. Leroy, K. Martyniuk, W. Feng, Erika McManus, Matthew Bailey, J. Javitch, P. Balsam, C. Kellendonk (2017)
Dopamine D2 Receptors in the Paraventricular Thalamus Attenuate Cocaine Locomotor SensitizationeNeuro, 4
C. Wiers, E. Shumay, E. Cabrera, E. Shokri-Kojori, T. Gladwin, E. Skarda, S. Cunningham, S. Kim, T. Wong, D. Tomasi, G. Wang, N. Volkow (2016)
Reduced sleep duration mediates decreases in striatal D2/D3 receptor availability in cocaine abusersTranslational Psychiatry, 6
Timothy Behrens, H. Johansen-Berg, M. Woolrich, S. Smith, C. Wheeler-Kingshott, P. Boulby, G. Barker, E. Sillery, K. Sheehan, O. Ciccarelli, A. Thompson, J. Brady, P. Matthews (2003)
Non-invasive mapping of connections between human thalamus and cortex using diffusion imagingNature Neuroscience, 6
A. Brody, R. Hubert, M. Mamoun, Ryutaro Enoki, Lizette Garcia, Paul Abraham, P. Young, M. Mandelkern (2016)
Nicotinic acetylcholine receptor availability in cigarette smokers: effect of heavy caffeine or marijuana usePsychopharmacology, 233
S. Ikemoto (2007)
Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complexBrain Research Reviews, 56
A. Konova, S. Moeller, D. Tomasi, N. Volkow, R. Goldstein (2013)
Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction.JAMA psychiatry, 70 8
O. Farr, Shenmin Zhang, Sien Hu, D. Matuskey, O. Abdelghany, R. Malison, C. Li (2014)
The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults.The international journal of neuropsychopharmacology, 17 8
C. Wiers, E. Shokri-Kojori, Christopher Wong, A. Abi-Dargham, Ş. Demiral, D. Tomasi, Gene-Jack Wang, N. Volkow (2016)
Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in MalesNeuropsychopharmacology, 41
Cathrin Canto, Y. Onuki, Bastiaan Bruinsma, Y. Werf, C. Zeeuw (2017)
The Sleeping CerebellumTrends in Neurosciences, 40
M. Scofield, Jasper Heinsbroek, C. Gipson, Y. Kupchik, S. Spencer, Alexander Smith, Douglas Roberts-Wolfe, P. Kalivas (2016)
The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate HomeostasisPharmacological Reviews, 68
A. Linssen, A. Sambeth, E. Vuurman, Wim Riedel (2014)
Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies.The international journal of neuropsychopharmacology, 17 6
EE Benarroch (2009)
The locus ceruleus norepinephrine system: functional organization and potential clinical significanceNeurology, 73
Rachel Navarra, B. Clark, Gerard Zitnik, B. Waterhouse (2013)
Methylphenidate and atomoxetine enhance sensory-evoked neuronal activity in the visual thalamus of male rats.Experimental and clinical psychopharmacology, 21 5
A. Matzeu, F. Weiss, R. Martin‐Fardon (2015)
Transient inactivation of the posterior paraventricular nucleus of the thalamus blocks cocaine-seeking behaviorNeuroscience Letters, 608
A. Ashok, Y. Mizuno, N. Volkow, O. Howes (2017)
Association of Stimulant Use With Dopaminergic Alterations in Users of Cocaine, Amphetamine, or Methamphetamine: A Systematic Review and Meta-analysisJAMA Psychiatry, 74
B. Madras (2014)
Dopamine challenge reveals neuroadaptive changes in marijuana abusersProceedings of the National Academy of Sciences, 111
Karl Friston, K. Worsley, R. Frackowiak, J. Mazziotta, Alan Evans (1994)
Assessing the significance of focal activations using their spatial extentHuman Brain Mapping, 1
D. Woodward, H. Moises, B. Waterhouse, H. Yeh, J. Cheun (1991)
The cerebellar norepinephrine system: inhibition, modulation, and gating.Progress in brain research, 88
E. Benarroch (2009)
The locus ceruleus norepinephrine systemNeurology, 73
E. Evers, Peter Stiers, J. Ramaekers (2016)
High reward expectancy during methylphenidate depresses the dopaminergic response to gain and lossSocial Cognitive and Affective Neuroscience, 12
N. Volkow, Gene-Jack Wang, D. Tomasi, S. Kollins, T. Wigal, J. Newcorn, F. Telang, J. Fowler, J. Logan, Christopher Wong, J. Swanson (2012)
Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity DisorderThe Journal of Neuroscience, 32
N. Volkow, Gene-Jack Wang, Joanna Fowler, J. Logan, Burton Angrist, R. Hitzemann, Jeffrey Lieberman, N. Pappas (1997)
Effects of methylphenidate on regional brain glucose metabolism in humans: relationship to dopamine D2 receptors.The American journal of psychiatry, 154 1
Ina Schabram, K. Henkel, S. Shali, C. Dietrich, J. Schmaljohann, O. Winz, S. Prinz, L. Rademacher, B. Neumaier, M. Felzen, Y. Kumakura, P. Cumming, F. Mottaghy, G. Gründer, I. Vernaleken (2014)
Acute and Sustained Effects of Methylphenidate on Cognition and Presynaptic Dopamine Metabolism: An [18F]FDOPA PET StudyThe Journal of Neuroscience, 34
P. Mergenthaler, U. Lindauer, G. Dienel, A. Meisel (2013)
Sugar for the brain: the role of glucose in physiological and pathological brain functionTrends in Neurosciences, 36
Minyoung Oh, Jae Kim, Jungsu Oh, C. Lee, S. Chung (2017)
Different subregional metabolism patterns in patients with cerebellar ataxia by 18F-fluorodeoxyglucose positron emission tomographyPLoS ONE, 12
N. Volkow, R. Wise, R. Baler (2017)
The dopamine motive system: implications for drug and food addictionNature Reviews Neuroscience, 18
L. Schwarz, Kazunari Miyamichi, Xiaojing Gao, Kevin Beier, Brandon Weissbourd, K. DeLoach, Jing Ren, Sandy Ibanes, R. Malenka, E. Kremer, Liqun Luo (2015)
Viral-genetic tracing of the input–output organization of a central norepinephrine circuitNature, 524
D. Tomasi, N. Volkow (2010)
Functional connectivity density mappingProceedings of the National Academy of Sciences, 107
M. Bloomfield, A. Ashok, N. Volkow, O. Howes (2016)
The effects of Δ9-tetrahydrocannabinol on the dopamine systemNature, 539
M. Sánchez-González, M. García-Cabezas, B. Rico, C. Cavada (2005)
The Primate Thalamus Is a Key Target for Brain DopamineThe Journal of Neuroscience, 25
N. Volkow, G. Wang, S. Gatley, J. Fowler, Y. Ding, J. Logan, R. Hitzemann, B. Angrist, J. Lieberman (2005)
Temporal relationships between the pharmacokinetics of methylphenidate in the human brain and its behavioral and cardiovascular effectsPsychopharmacology, 123
N. Volkow, Gene-Jack Wang, J. Newcorn, S. Kollins, T. Wigal, F. Telang, J. Fowler, R. Goldstein, N. Klein, J. Logan, Christopher Wong, J. Swanson (2010)
Motivation Deficit in ADHD is Associated with Dysfunction of the Dopamine Reward PathwayMolecular psychiatry, 16
S. Cunningham, D. Tomasi, N. Volkow (2017)
Structural and functional connectivity of the precuneus and thalamus to the default mode networkHuman Brain Mapping, 38
F. Filbey, Joseph Schacht, Ursula Myers, R. Chavez, K. Hutchison (2009)
Marijuana craving in the brainProceedings of the National Academy of Sciences, 106
Miguel Dasilva, K. Grieve, J. Cudeiro, C. Rivadulla (2014)
Anandamide activation of CB1 receptors increases spontaneous bursting and oscillatory activity in the thalamusNeuroscience, 265
A. Konova, S. Moeller, D. Tomasi, R. Goldstein (2015)
Effects of chronic and acute stimulants on brain functional connectivity hubsBrain Research, 1628
Nora Volkow, N. Volkow, D. Tomasi, Gene-Jack Wang, F. Telang, J. Fowler, J. Logan, L. Maynard, Christopher Wong (2013)
Predominance of D2 Receptors in Mediating Dopamine's Effects in Brain Metabolism: Effects of AlcoholismThe Journal of Neuroscience, 33
N. Volkow, D. Tomasi, Gene-Jack Wang, F. Telang, J. Fowler, J. Logan, H. Benveniste, R. Kim, P. Thanos, S. Ferré (2012)
Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human BrainThe Journal of Neuroscience, 32
J. Ramaekers, E. Evers, E. Theunissen, K. Kuypers, A. Goulas, P. Stiers (2013)
Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuitPsychopharmacology, 229
Yingjie Zhu, Carl Wienecke, G. Nachtrab, Xiaoke Chen (2016)
A thalamic input to the nucleus accumbens mediates opiate dependenceNature, 530
N. Volkow, Gene-Jack Wang, F. Telang, J. Fowler, J. Logan, A. Childress, Millard Jayne, Yeming Ma, Christopher Wong (2008)
Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cuesNeuroImage, 39
R. Team (2014)
R: A language and environment for statistical computing.MSOR connections, 1
R. Cools, M. D’Esposito (2011)
Inverted-U–Shaped Dopamine Actions on Human Working Memory and Cognitive ControlBiological Psychiatry, 69
L. Schwarz, L. Luo (2015)
Organization of the Locus Coeruleus-Norepinephrine SystemCurrent Biology, 25
N. Volkow, Gene-Jack Wang, F. Telang, J. Fowler, D. Alexoff, J. Logan, Millard Jayne, Christopher Wong, D. Tomasi (2014)
Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severityProceedings of the National Academy of Sciences, 111
D. Rothman, H. Feyter, R. Graaf, G. Mason, K. Behar (2011)
13C MRS studies of neuroenergetics and neurotransmitter cycling in humansNMR in Biomedicine, 24
Methylphenidate (MPH) is a first line treatment for ADHD and is also misused as a purported cognitive enhancer, yet its effects on brain function are still poorly understood. Recent functional magnetic resonance imaging (fMRI) studies showed that MPH altered cortico-striatal resting functional connectivity (RFC). Here we investigated the effects of MPH in thalamic connectivity since the thalamus modulates striato-cortical signaling. We hypothesized that MPH would increase thalamic connectivity and metabolism, and that this response would be blunted in cannabis abusers. For this purpose, we measured RFC in seven thalamic nuclei using fMRI and brain glucose metabolism using positron emission tomography (PET) and 18F-fluorodeoxyglucose (FDG) in sixteen healthy controls and thirteen participants with cannabis use disorder (CUD) twice after placebo and after MPH (0.5 mg/kg, iv). MPH significantly increased thalamo-cerebellar connectivity and cerebellar metabolism to the same extent in both groups. Group comparisons revealed that in CUD compared to controls, metabolism in nucleus accumbens was lower for the placebo and MPH measures, that MPH-induced increases in thalamic metabolism were blunted, and that enhanced negative connectivity between thalamus and accumbens in CUD was normalized by MPH (reducing negative connectivity). Our findings identify the thalamus as a target of MPH, which increased its metabolism and connectivity. The reduced metabolism in nucleus accumbens and the disrupted thalamo-accumbens connectivity (enhanced negative connectivity) in CUD is consistent with impaired reactivity of the brain reward’s circuit. MPH’s normalization of thalamo-accumbens connectivity (reduced negative connectivity) brings forth its potential therapeutic value in CUD, which merits investigation.
Neuropsychopharmacology – Springer Journals
Published: Dec 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.