Access the full text.
Sign up today, get DeepDyve free for 14 days.
Xiulei Ji, Kyu Lee, L. Nazar (2009)
A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries.Nature materials, 8 6
Shuru Chen, Jianming Zheng, Donghai Mei, K. Han, M. Engelhard, Wengao Zhao, Wu Xu, Jun Liu, Ji‐Guang Zhang (2018)
High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration ElectrolytesAdvanced Materials, 30
F. Jeschull, D. Brandell, K. Edström, M. Lacey (2015)
A stable graphite negative electrode for the lithium-sulfur battery.Chemical communications, 51 96
O. Borodin, Liumin Suo, Mallory Gobet, X. Ren, Fei Wang, A. Faraone, Jing Peng, M. Olguin, M. Schroeder, M. Ding, E. Gobrogge, Arthur Cresce, Stephen Munoz, J. Dura, S. Greenbaum, Chunsheng Wang, K. Xu (2017)
Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes.ACS nano, 11 10
Nianwu Li, Ya‐Xia Yin, Chunpeng Yang, Yu‐Guo Guo (2016)
An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal AnodesAdvanced Materials, 28
R. Cao, Wu Xu, Dongping Lv, Jie Xiao, Ji‐Guang Zhang (2015)
Anodes for Rechargeable Lithium‐Sulfur BatteriesAdvanced Energy Materials, 5
Kaoru Dokko, Naoki Tachikawa, Kento Yamauchi, M. Tsuchiya, Azusa Yamazaki, E. Takashima, Jun-Woo Park, K. Ueno, S. Seki, Nobuyuki Serizawa, M. Watanabe (2013)
Solvate Ionic Liquid Electrolyte for Li–S BatteriesJournal of The Electrochemical Society, 160
Jun-Woo Park, Kento Yamauchi, E. Takashima, Naoki Tachikawa, K. Ueno, Kaoru Dokko, M. Watanabe (2013)
Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur BatteriesJournal of Physical Chemistry C, 117
A. Manthiram, Yongzhu Fu, Sheng‐Heng Chung, Chenxi Zu, Yu‐Sheng Su (2014)
Rechargeable lithium-sulfur batteries.Chemical reviews, 114 23
N. Choi, Zonghai Chen, S. Freunberger, Xiulei Ji, Yang‐Kook Sun, K. Amine, G. Yushin, L. Nazar, Jaephil Cho, P. Bruce (2012)
Challenges facing lithium batteries and electrical double-layer capacitors.Angewandte Chemie, 51 40
Jianming Zheng, J. Lochala, A. Kwok, Z. Deng, Jie Xiao (2017)
Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage ApplicationsAdvanced Science, 4
M. Cuisinier, Pierre‐Etienne Cabelguen, Brian Adams, A. Garsuch, M. Balasubramanian, L. Nazar (2014)
Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteriesEnergy and Environmental Science, 7
Da‐Wei Wang, Qingcong Zeng, Guangmin Zhou, L. Yin, Feng Li, Hui‐Ming Cheng, I. Gentle, G. Lu (2013)
Carbon–sulfur composites for Li–S batteries: status and prospectsJournal of Materials Chemistry, 1
T. Doi, Y. Shimizu, M. Hashinokuchi, M. Inaba (2017)
Dilution of Highly Concentrated LiBF4/Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi0.5Mn1.5O4 Positive ElectrodesJournal of The Electrochemical Society, 164
Lifen Xiao, Yuliang Cao, Jie Xiao, B. Schwenzer, M. Engelhard, L. Saraf, Z. Nie, G. Exarhos, Jun Liu (2012)
A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle LifeAdvanced Materials, 24
S. Moon, Y. Jung, W. Jung, Dae Jung, J. Choi, Do Kim (2013)
Encapsulated Monoclinic Sulfur for Stable Cycling of Li–S Rechargeable BatteriesAdvanced Materials, 25
Arelo Tanoh, Nicolas Gauriot, G. Delport, James Xiao, Rajal Pandya, Jooyoung Sung, Jesse, Allardice, Zhaojun Li, Cyan Williams, Alan Baldwin, S. Stranks, A. Rao (2005)
Supporting Information
Shengbo Zhang (2013)
Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutionsJournal of Power Sources, 231
(2014)
Energy 2016, 1, 16010; b)
Yuki Yamada, A. Yamada (2015)
Review—Superconcentrated Electrolytes for Lithium BatteriesJournal of The Electrochemical Society, 162
DME50") electrolytes can be obtained in the same way with solvent volume ratio of OFE: DME of 85: 15 and 50: 50, respectively. For another contrast electrolyte of 1M LiTFSI/DOL+DME (abbreviated as
Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun‐Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi Cui (2016)
Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nature nanotechnology, 11 7
Liwen Ji, M. Rao, Haimei Zheng, Liang Zhang, Yuanchang Li, W. Duan, Jinghua Guo, E. Cairns, Yuegang Zhang (2011)
Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells.Journal of the American Chemical Society, 133 46
Mol salt /Liter solvents ). Similarly, the 1M LiFSI/OFE+DME15 (abbreviated as "DME15
Georg Bieker, M. Winter, P. Bieker (2015)
Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode.Physical chemistry chemical physics : PCCP, 17 14
H. Moon, Toshihiko Mandai, R. Tatara, K. Ueno, Azusa Yamazaki, Kazuki Yoshida, S. Seki, Kaoru Dokko, M. Watanabe (2015)
Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur BatteriesJournal of Physical Chemistry C, 119
Shiguo Zhang, K. Ueno, Kaoru Dokko, M. Watanabe (2015)
Recent Advances in Electrolytes for Lithium–Sulfur BatteriesAdvanced Energy Materials, 5
Minjeong Shin, Heng-Liang Wu, Badri Narayanan, K. See, R. Assary, Lingyang Zhu, R. Haasch, Shuo Zhang, Zhengcheng Zhang, L. Curtiss, A. Gewirth (2017)
Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li+ Solvation Structure and Li-S Battery Performance.ACS applied materials & interfaces, 9 45
(2013)
1, 10; b) S. S. Zhang
M. Cuisinier, Pierre‐Etienne Cabelguen, S. Evers, Guang He, Mason Kolbeck, A. Garsuch, T. Bolin, M. Balasubramanian, L. Nazar (2013)
Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption SpectroscopyJournal of Physical Chemistry Letters, 4
Gaojie Xu, Chunguang Pang, Bingbing Chen, Jun Ma, Xiao Wang, J. Chai, Qingfu Wang, W. An, Xin-hong Zhou, G. Cui, Liquan Chen (2018)
Prescribing Functional Additives for Treating the Poor Performances of High‐Voltage (5 V‐class) LiNi0.5Mn1.5O4/MCMB Li‐Ion BatteriesAdvanced Energy Materials, 8
G. Zheng, S. Lee, Zheng Liang, Hyun‐Wook Lee, Kai Yan, Hongbin Yao, Haotian Wang, Weiyang Li, S. Chu, Yi Cui (2014)
Interconnected hollow carbon nanospheres for stable lithium metal anodes.Nature nanotechnology, 9 8
C. Barchasz, F. Molton, C. Duboc, J. Leprêtre, S. Patoux, F. Alloin (2012)
Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification.Analytical chemistry, 84 9
Min‐Sik Park, Sang-Bok Ma, Dong Lee, D. Im, S. Doo, O. Yamamoto (2014)
A Highly Reversible Lithium Metal AnodeScientific Reports, 4
Liping Yue, Jun Ma, Jian-jun Zhang, Jingwen Zhao, Shanmu Dong, Zhihong Liu, G. Cui, Liquan Chen (2016)
All solid-state polymer electrolytes for high-performance lithium ion batteriesEnergy Storage Materials, 5
Jianming Zheng, Shuru Chen, Wengao Zhao, Junhua Song, M. Engelhard, Ji‐Guang Zhang (2018)
Extremely Stable Sodium Metal Batteries Enabled by Localized High-Concentration ElectrolytesACS energy letters
Jing Zheng, Xiulin Fan, G. Ji, Haiyang Wang, S. Hou, Kerry Demella, S. Raghavan, Jing Wang, K. Xu, Chunsheng Wang (2018)
Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteriesNano Energy
Tianquan Lin, Yufeng Tang, Yaoming Wang, H. Bi, Zhanqiang Liu, Fuqiang Huang, Xiaoming Xie, M. Jiang (2013)
Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulfur composites for high-performance lithium-sulfur batteriesEnergy and Environmental Science, 6
Liumin Suo, Yong‐Sheng Hu, Hong Li, M. Armand, Liquan Chen (2013)
A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteriesNature Communications, 4
Ji College of Materials Science and Technology
Kai Yan, Zhenda Lu, Hyun‐Wook Lee, F. Xiong, Po-Chun Hsu, Yuzhang Li, Jie Zhao, S. Chu, Yi Cui (2016)
Selective deposition and stable encapsulation of lithium through heterogeneous seeded growthNature Energy, 1
Jiangfeng Qian, W. Henderson, Wu Xu, P. Bhattacharya, M. Engelhard, O. Borodin, Ji‐Guang Zhang (2015)
High rate and stable cycling of lithium metal anodeNature Communications, 6
Rechargeable Li–S batteries are regarded as one of the most promising next‐generation energy‐storage systems. However, the inevitable formation of Li dendrites and the shuttle effect of lithium polysulfides significantly weakens electrochemical performance, preventing its practical application. Herein, a new class of localized high‐concentration electrolyte (LHCE) enabled by adding inert fluoroalkyl ether of 1H,1H,5H‐octafluoropentyl‐1,1,2,2‐tetrafluoroethyl ether into highly‐concentrated electrolytes (HCE) lithium bis(fluorosulfonyl) imide/dimethoxyether (DME) system is reported to suppress Li dendrite formation and minimize the solubility of the high‐order polysulfides in electrolytes, thus reducing the amount of electrolyte in cells. Such a unique LHCE can achieve a high coulombic efficiency of Li plating/stripping up to 99.3% and completely suppressing the shuttling effect, thus maintaining a S cathode capacity of 775 mAh g−1 for 150 cycles with a lean electrolyte of 4.56 g A−1 h−1. The LHCE reduces the solubility of lithium polysulfides, allowing the Li/S cell to achieve super performance in a lean electrolyte. This conception of using inert diluents in a highly concentrated electrolyte can accelerate commercialization of Li–S battery technology.
Advanced Energy Materials – Wiley
Published: Apr 1, 2019
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.