Access the full text.
Sign up today, get DeepDyve free for 14 days.
Dingchang Lin, Yayuan Liu, Yi Cui (2017)
Reviving the lithium metal anode for high-energy batteries.Nature nanotechnology, 12 3
P. Pregosin, and Kumar, I. Fernández (2005)
Pulsed gradient spin-echo (pgse) diffusion and 1H,19F heteronuclear Overhauser spectroscopy (HOESY) NMR methods in inorganic and organometallic chemistry: something old and something new.Chemical reviews, 105 8
Jianming Zheng, M. Engelhard, Donghai Mei, Shuhong Jiao, B. Polzin, Ji‐Guang Zhang, Wu Xu (2017)
Electrolyte additive enabled fast charging and stable cycling lithium metal batteriesNature Energy, 2
G. Kresse, J. Hafner (1994)
Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium.Physical review. B, Condensed matter, 49 20
G. Kresse, J. Furthmüller (1996)
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Physical review. B, Condensed matter, 54 16
Jianhui Wang, Yuki Yamada, Keitaro Sodeyama, C. Chiang, Y. Tateyama, A. Yamada (2016)
Superconcentrated electrolytes for a high-voltage lithium-ion batteryNature Communications, 7
Hui Wang, M. Matsui, Hiroko Kuwata, Hidetoshi Sonoki, Y. Matsuda, Xuefu Shang, Y. Takeda, O. Yamamoto, N. Imanishi (2017)
A reversible dendrite-free high-areal-capacity lithium metal electrodeNature Communications, 8
Yingying Lu, Kevin Korf, Y. Kambe, Zhengyuan Tu, L. Archer (2014)
Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries.Angewandte Chemie, 53 2
Yang‐Kook Sun, Seung‐Taek Myung, Byung-Chun Park, J. Prakash, I. Belharouak, K. Amine (2009)
High-energy cathode material for long-life and safe lithium batteries.Nature materials, 8 4
Jiangfeng Qian, Brian Adams, Jianming Zheng, Wu Xu, W. Henderson, Jun Wang, M. Bowden, Suochang Xu, J. Hu, Ji‐Guang Zhang (2016)
Anode‐Free Rechargeable Lithium Metal BatteriesAdvanced Functional Materials, 26
Kaoru Dokko, Naoki Tachikawa, Kento Yamauchi, M. Tsuchiya, Azusa Yamazaki, E. Takashima, Jun-Woo Park, K. Ueno, S. Seki, Nobuyuki Serizawa, M. Watanabe (2013)
Solvate Ionic Liquid Electrolyte for Li–S BatteriesJournal of The Electrochemical Society, 160
J. Tarascon, M. Armand (2001)
Issues and challenges facing rechargeable lithium batteriesNature, 414
Jianming Zheng, J. Lochala, A. Kwok, Z. Deng, Jie Xiao (2017)
Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage ApplicationsAdvanced Science, 4
U. Sacken, E. Nodwell, Avtar Sundler, J. Dahn (1994)
Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteriesSolid State Ionics, 69
T. Doi, Y. Shimizu, M. Hashinokuchi, M. Inaba (2017)
Dilution of Highly Concentrated LiBF4/Propylene Carbonate Electrolyte Solution with Fluoroalkyl Ethers for 5-V LiNi0.5Mn1.5O4 Positive ElectrodesJournal of The Electrochemical Society, 164
F. Ding, Wu Xu, Xilin Chen, Jian Zhang, M. Engelhard, Yaohui Zhang, B. Johnson, J. Crum, T. Blake, Xingjiang Liu, Ji‐Guang Zhang (2013)
Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium ElectrodeJournal of The Electrochemical Society, 160
B. Liu, Wu Xu, P. Yan, Sun Kim, M. Engelhard, Xiuliang Sun, Donghai Mei, Jaephil Cho, Chongmin Wang, Ji‐Guang Zhang (2017)
Stabilization of Li Metal Anode in DMSO‐Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O2 BatteriesAdvanced Energy Materials, 7
G. Kresse, J. Hafner (1995)
Ab initio molecular dynamics for liquid metals.Physical review. B, Condensed matter, 47 1
Yuki Yamada, A. Yamada (2015)
Review—Superconcentrated Electrolytes for Lithium BatteriesJournal of The Electrochemical Society, 162
Dingchang Lin, Yayuan Liu, Zheng Liang, Hyun‐Wook Lee, Jie Sun, Haotian Wang, Kai Yan, Jin Xie, Yi Cui (2016)
Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nature nanotechnology, 11 7
K. Ueno, J. Murai, H. Moon, Kaoru Dokko, M. Watanabe (2017)
A Design Approach to Lithium-Ion Battery Electrolyte Based on Diluted Solvate Ionic LiquidsJournal of The Electrochemical Society, 164
H. Moon, Toshihiko Mandai, R. Tatara, K. Ueno, Azusa Yamazaki, Kazuki Yoshida, S. Seki, Kaoru Dokko, M. Watanabe (2015)
Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur BatteriesJournal of Physical Chemistry C, 119
Yuki Yamada, K. Furukawa, Keitaro Sodeyama, K. Kikuchi, Makoto Yaegashi, Y. Tateyama, A. Yamada (2014)
Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries.Journal of the American Chemical Society, 136 13
K. Xu (2014)
Electrolytes and interphases in Li-ion batteries and beyond.Chemical reviews, 114 23
F. Ding, Wu Xu, G. Graff, Jian Zhang, M. Sushko, Xilin Chen, Yuyan Shao, M. Engelhard, Z. Nie, Jie Xiao, Xingjiang Liu, P. Sushko, Jun Liu, Ji‐Guang Zhang (2013)
Dendrite-free lithium deposition via self-healing electrostatic shield mechanism.Journal of the American Chemical Society, 135 11
Yingying Lu, Zhengyuan Tu, L. Archer (2014)
Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.Nature materials, 13 10
Liumin Suo, Yong‐Sheng Hu, Hong Li, M. Armand, Liquan Chen (2013)
A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteriesNature Communications, 4
Liumin Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, Xiulin Fan, Chao Luo, Chunsheng Wang, K. Xu (2015)
“Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistriesScience, 350
P. Bruce, S. Freunberger, L. Hardwick, J. Tarascon (2011)
Li-O2 and Li-S batteries with high energy storage.Nature materials, 11 1
S. Jeong, Hee-Young Seo, Dong-Hak Kim, H. Han, Jin-Gul Kim, Yoon-Bae Lee, Y. Iriyama, T. Abe, Z. Ogumi (2008)
Suppression of dendritic lithium formation by using concentrated electrolyte solutionsElectrochemistry Communications, 10
Kai Liu, Allen Pei, H. Lee, Biao Kong, Nian Liu, Dingchang Lin, Yayuan Liu, Chong Liu, Po-Chun Hsu, Zhenan Bao, Yi Cui (2017)
Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer.Journal of the American Chemical Society, 139 13
D. Aurbach, E. Zinigrad, Y. Cohen, Hanan Teller (2002)
A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutionsSolid State Ionics, 148
Ji‐Guang Zhang, Wu Xu, W. Henderson (2017)
Li Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science
J. Goodenough, Kyusung Park (2013)
The Li-ion rechargeable battery: a perspective.Journal of the American Chemical Society, 135 4
K. Ueno, J. Murai, Kohei Ikeda, S. Tsuzuki, M. Tsuchiya, R. Tatara, Toshihiko Mandai, Y. Umebayashi, Kaoru Dokko, M. Watanabe (2016)
Li+ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular SolventsJournal of Physical Chemistry C, 120
D. Aurbach, Y. Cohen (1996)
The Application of Atomic Force Microscopy for the Study of Li Deposition ProcessesJournal of The Electrochemical Society, 143
Brian Adams, Jianming Zheng, Xiaodi Ren, Wu Xu, Ji‐Guang Zhang (2018)
Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal BatteriesAdvanced Energy Materials, 8
Jiangfeng Qian, W. Henderson, Wu Xu, P. Bhattacharya, M. Engelhard, O. Borodin, Ji‐Guang Zhang (2015)
High rate and stable cycling of lithium metal anodeNature Communications, 6
M. Whittingham (2012)
History, Evolution, and Future Status of Energy StorageProceedings of the IEEE, 100
Xin‐Bing Cheng, Rui Zhang, Chen‐Zi Zhao, Qiang Zhang (2017)
Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review.Chemical reviews, 117 15
Rechargeable lithium‐metal batteries (LMBs) are regarded as the “holy grail” of energy‐storage systems, but the electrolytes that are highly stable with both a lithium‐metal anode and high‐voltage cathodes still remain a great challenge. Here a novel “localized high‐concentration electrolyte” (HCE; 1.2 m lithium bis(fluorosulfonyl)imide in a mixture of dimethyl carbonate/bis(2,2,2‐trifluoroethyl) ether (1:2 by mol)) is reported that enables dendrite‐free cycling of lithium‐metal anodes with high Coulombic efficiency (99.5%) and excellent capacity retention (>80% after 700 cycles) of Li||LiNi1/3Mn1/3Co1/3O2 batteries. Unlike the HCEs reported before, the electrolyte reported in this work exhibits low concentration, low cost, low viscosity, improved conductivity, and good wettability that make LMBs closer to practical applications. The fundamental concept of “localized HCEs” developed in this work can also be applied to other battery systems, sensors, supercapacitors, and other electrochemical systems.
Advanced Materials – Wiley
Published: Jan 1, 2018
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.