Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Bellu, J. Kiel (2003)
Selective degradation of peroxisomes in yeastsMicroscopy Research and Technique, 61
Janet Komduur (2009)
University of Groningen Molecular aspects of peroxisome degradation in Hansenula polymorpha
K. Takeshige, M. Baba, S. Tsuboi, Takeshi Noda, Y. Ohsumi (1992)
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its inductionThe Journal of Cell Biology, 119
K. Wolfe, D. Shields (1997)
Molecular evidence for an ancient duplication of the entire yeast genomeNature, 387
Tomohiro Yorimitsu, D. Klionsky (2005)
Autophagy: molecular machinery for self-eatingCell Death and Differentiation, 12
R. Loewith, E. Jacinto, S. Wullschleger, A. Lorberg, J. Crespo, D. Bonenfant, W. Oppliger, P. Jenoe, M. Hall (2002)
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control.Molecular cell, 10 3
Tomoko Kawamata, Y. Kamada, Kuninori Suzuki, Norihiro Kuboshima, Hiroshi Akimatsu, S. Ota, M. Ohsumi, Y. Ohsumi (2005)
Characterization of a novel autophagy-specific gene, ATG29.Biochemical and biophysical research communications, 338 4
D. Klionsky, J. Cregg, W. Dunn, S. Emr, Y. Sakai, I. Sandoval, A. Sibirny, S. Subramani, M. Thumm, M. Veenhuis, Y. Ohsumi (2003)
A unified nomenclature for yeast autophagy-related genes.Developmental cell, 5 4
Wei-Lien Yen, J. Legakis, Usha Nair, D. Klionsky (2006)
Atg27 is required for autophagy-dependent cycling of Atg9.Molecular biology of the cell, 18 2
A. Bellu, F. Salomons, J. Kiel, M. Veenhuis, I. Klei (2002)
Removal of Pex3p Is an Important Initial Stage in Selective Peroxisome Degradation in Hansenula polymorpha *The Journal of Biological Chemistry, 277
Y. Peer, R. Wachter (1994)
TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environmentComput. Appl. Biosci., 10
Allison Thompson, J. Doelling, Anongpat Suttangkakul, R. Vierstra (2005)
Autophagic Nutrient Recycling in Arabidopsis Directed by the ATG8 and ATG12 Conjugation Pathways1Plant Physiology, 138
Leda Cummings, Leigh Riley, Lori Black, Alexander Souvorov, S. Resenchuk, I. Dondoshansky, T. Tatusova (2002)
Genomic BLAST: custom-defined virtual databases for complete and unfinished genomes.FEMS microbiology letters, 216 2
A. Gavin, P. Aloy, P. Grandi, R. Krause, Markus Boesche, M. Marzioch, Christina Rau, L. Jensen, Sonja Bastuck, Birgit Dümpelfeld, A. Edelmann, Marie-Anne Heurtier, Verena Hoffman, C. Höfert, Karin Klein, Manuela Hudak, A. Michon, Malgorzata Schelder, M. Schirle, M. Remor, T. Rudi, S. Hooper, A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, G. Neubauer, Jens Rick, B. Kuster, P. Bork, R. Russell, G. Superti-Furga (2006)
Proteome survey reveals modularity of the yeast cell machineryNature, 440
I. Suriapranata, Ulrike Epple, Daniela Bernreuther, Monika Bredschneider, Katja Sovarasteanu, M. Thumm (2000)
The breakdown of autophagic vesicles inside the vacuole depends on Aut4p.Journal of cell science, 113 ( Pt 22)
A. Young, Edmond Chan, X. Hu, Robert Köchl, Samuel Crawshaw, S. High, D. Hailey, J. Lippincott-Schwartz, S. Tooze (2006)
Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomesJournal of Cell Science, 119
X. Liang, S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, B. Levine (1999)
Induction of autophagy and inhibition of tumorigenesis by beclin 1Nature, 402
Kuninori Suzuki, Y. Kamada, Y. Ohsumi (2002)
Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae.Developmental cell, 3 6
Yang Cao, D. Klionsky (2007)
Atg26 is Not Involved in Autophagy-Related Pathways in Saccharomyces cerevisiaeAutophagy, 3
Y. Ohsumi (2001)
Ubiquitin and proteasomes: Molecular dissection of autophagy: two ubiquitin-like systemsNature Reviews Molecular Cell Biology, 2
C. Simillion, K. Vandepoele, M. Montagu, M. Zabeau, Y. Peer (2002)
The hidden duplication past of Arabidopsis thalianaProceedings of the National Academy of Sciences of the United States of America, 99
Iryna Monastryska, J. Kiel, Arjen Krikken, Janet Komduur, M. Veenhuis, I. Klei (2005)
The Hansenula polymorpha ATG25 Gene Encodes a Novel Coiled-Coil Protein that is Required for MacropexophagyAutophagy, 1
L. Abi-Rached, A. Gilles, T. Shiina, P. Pontarotti, H. Inoko (2002)
Evidence of en bloc duplication in vertebrate genomesNature Genetics, 31
M. Veenhuis, A. Douma, W. Harder, M. Osumi (1983)
Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymesArchives of Microbiology, 134
Adriana Leão, J. Kiel (2003)
Peroxisome homeostasis in Hansenula polymorpha.FEMS yeast research, 4 2
Y. Ano, Takeshi Hattori, Masahide Oku, H. Mukaiyama, M. Baba, Y. Ohsumi, N. Kato, Y. Sakai (2004)
A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate.Molecular biology of the cell, 16 2
John Kim, Y. Kamada, P. Strømhaug, J. Guan, A. Hefner-Gravink, M. Baba, S. Scott, Y. Ohsumi, W. Dunn, D. Klionsky (2001)
Cvt9/Gsa9 Functions in Sequestering Selective Cytosolic Cargo Destined for the VacuoleThe Journal of Cell Biology, 153
N. Krogan, G. Cagney, Haiyuan Yu, Gouqing Zhong, Xinghua Guo, A. Ignatchenko, Joyce Li, S. Pu, Nira Datta, A. Tikuisis, Thanuja Punna, J. Peregrín-Alvarez, M. Shales, Xin Zhang, Michael Davey, M. Robinson, Alberto Paccanaro, J. Bray, Anthony Sheung, B. Beattie, D. Richards, Veronica Canadien, A. Lalev, Frank Mena, Peter Wong, A. Starostine, Myra Canete, James Vlasblom, Samuel Wu, Chris Orsi, Sean Collins, Shamanta Chandran, R. Haw, J. Rilstone, Kiran Gandi, Natalie Thompson, Gabriel Musso, P. Onge, S. Ghanny, M. Lam, G. Butland, Amin Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J. Weissman, C. Ingles, T. Hughes, J. Parkinson, M. Gerstein, S. Wodak, A. Emili, J. Greenblatt (2006)
Global landscape of protein complexes in the yeast Saccharomyces cerevisiaeNature, 440
M. Herman, S. Gillies, P. Michels, D. Rigden (2006)
Autophagy and Related processes in Trypanosomatids: Insights from Genomic and Bioinformatic AnalysesAutophagy, 2
F. Reggiori, K. Tucker, P. Strømhaug, D. Klionsky (2004)
The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure.Developmental cell, 6 1
S. Yamashita, Masahide Oku, Y. Wasada, Y. Ano, Y. Sakai (2006)
PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagyThe Journal of Cell Biology, 173
D. Klionsky (2005)
The molecular machinery of autophagy: unanswered questionsJournal of Cell Science, 118
S. Teter, D. Klionsky (2000)
Transport of proteins to the yeast vacuole: autophagy, cytoplasm-to-vacuole targeting, and role of the vacuole in degradation.Seminars in cell & developmental biology, 11 3
Ryo Yokoyama, H. Kawasaki, H. Hirano (2006)
Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cellsThe FEBS Journal, 273
Atg 26 is not involved in
Y. Sakai, Masahide Oku, I. Klei, J. Kiel
Pexophagy: Autophagic Degradation of Peroxisomes
Adriana Leão-Helder, Arjen Krikken, G. Gellissen, I. Klei, M. Veenhuis, J. Kiel (2004)
Atg21p is essential for macropexophagy and microautophagy in the yeast Hansenula polymorphaFEBS Letters, 577
John Kim, S. Scott, M. Oda, D. Klionsky (1997)
Transport of a Large Oligomeric Protein by the Cytoplasm to Vacuole Protein Targeting PathwayThe Journal of Cell Biology, 137
Masahide Oku, D. Warnecke, Takeshi Noda, F. Müller, E. Heinz, H. Mukaiyama, N. Kato, Y. Sakai (2003)
Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domainThe EMBO Journal, 22
S. Teter, Kimberly Eggerton, S. Scott, John Kim, A. Fischer, D. Klionsky (2001)
Degradation of Lipid Vesicles in the Yeast Vacuole Requires Function of Cvt17, a Putative Lipase*The Journal of Biological Chemistry, 276
F. Reggiori, T. Shintani, Huira Chong, Usha Nair, D. Klionsky (2005)
Atg9 Cycles Between Mitochondria and the Pre-Autophagosomal Structure in YeastsAutophagy, 1
William Jr., J. Cregg, J. Kiel, I. Klei, Masahide Oku, Y. Sakai, A. Sibirny, O. Stasyk, M. Veenhuis (2005)
Pexophagy: The Selective Autophagy of PeroxisomesAutophagy, 1
M. Ramezani-Rad, C. Hollenberg, J. Lauber, H. Wedler, E. Griess, C. Wagner, K. Albermann, J. Hani, M. Piontek, U. Dahlems, G. Gellissen (2003)
The Hansenula polymorpha (strain CBS4732) genome sequencing and analysis.FEMS yeast research, 4 2
Takashi Ito, Tomoko Chiba, Ritsuko Ozawa, Mikio Yoshida, Masahira Hattori, Y. Sakaki (2001)
A comprehensive two-hybrid analysis to explore the yeast protein interactomeProceedings of the National Academy of Sciences of the United States of America, 98
O. Stasyk, T. Nazarko, O. Stasyk, Olena Krasovska, D. Warnecke, J. Nicaud, J. Cregg, A. Sibirny (2003)
Sterol glucosyltransferases have different functional roles inPichia pastoris and Yarrowia lipolyticaCell Biology International, 27
M. Marelli, Jennifer Smith, Sunhee Jung, E. Yi, A. Nesvizhskii, R. Christmas, R. Saleem, Y. Tam, Andrei Fagarasanu, D. Goodlett, R. Aebersold, R. Rachubinski, J. Aitchison (2004)
Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membraneThe Journal of Cell Biology, 167
K. Tucker, F. Reggiori, W. Dunn, D. Klionsky (2003)
Atg23 Is Essential for the Cytoplasm to Vacuole Targeting Pathway and Efficient Autophagy but Not Pexophagy*Journal of Biological Chemistry, 278
Michael Oda, S. Scott, A. Hefner-Gravink, Anthony Caffarelli, D. Klionsky (1996)
Identification of a cytoplasm to vacuole targeting determinant in aminopeptidase IThe Journal of Cell Biology, 132
T. Shintani, D. Klionsky (2004)
Cargo Proteins Facilitate the Formation of Transport Vesicles in the Cytoplasm to Vacuole Targeting Pathway*Journal of Biological Chemistry, 279
S. Altschul, Thomas Madden, A. Schäffer, Jinghui Zhang, Zheng Zhang, W. Miller, D. Lipman (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleic acids research, 25 17
Daniel Nice, Trey Sato, P. Strømhaug, S. Emr, D. Klionsky (2002)
Cooperative Binding of the Cytoplasm to Vacuole Targeting Pathway Proteins, Cvt13 and Cvt20, to Phosphatidylinositol 3-Phosphate at the Pre-autophagosomal Structure Is Required for Selective Autophagy*The Journal of Biological Chemistry, 277
O. Stasyk, O. Stasyk, Richard Mathewson, Jean-Claude Farré, V. Nazarko, Olena Krasovska, S. Subramani, J. Cregg, A. Sibirny (2006)
Atg28, a Novel Coiled-Coil Protein Involved in Autophagic Degradation of Peroxisomes in the Methylotrophic Yeast Pichia pastorisAutophagy, 2
P. Strømhaug, F. Reggiori, J. Guan, Chao-Wen Wang, D. Klionsky (2004)
Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy.Molecular biology of the cell, 15 8
John Kim, Wei‐Pang Huang, P. Strømhaug, D. Klionsky (2002)
Convergence of Multiple Autophagy and Cytoplasm to Vacuole Targeting Components to a Perivacuolar Membrane Compartment Prior tode Novo Vesicle Formation*The Journal of Biological Chemistry, 277
J. Kiel, M. Veenhuis, I. Klei (2006)
PEX Genes in Fungal Genomes: Common, Rare or RedundantTraffic, 7
Tanya Harding, K. Morano, S. Scott, D. Klionsky (1995)
Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathwayThe Journal of Cell Biology, 131
H. Mukaiyama, M. Baba, M. Osumi, Satoshi Aoyagi, N. Kato, Y. Ohsumi, Y. Sakai (2003)
Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure.Molecular biology of the cell, 15 1
Ulrike Epple, E. Eskelinen, M. Thumm (2003)
Intravacuolar Membrane Lysis in Saccharomyces cerevisiaeThe Journal of Biological Chemistry, 278
A. Bellu, M. Komori, I. Klei, J. Kiel, M. Veenhuis (2001)
Peroxisome Biogenesis and Selective Degradation Converge at Pex14p*The Journal of Biological Chemistry, 276
N. Okazaki, Jin Yan, S. Yuasa, T. Ueno, E. Kominami, Y. Masuho, H. Koga, M. Muramatsu (2000)
Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation.Brain research. Molecular brain research, 85 1-2
J. Guan, P. Strømhaug, P. Strømhaug, Michael George, Pouran Habibzadegah-Tari, Andrew Bevan, W. Dunn, D. Klionsky (2001)
Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris.Molecular biology of the cell, 12 12
H. Abeliovich, W. Dunn, John Kim, D. Klionsky (2000)
Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion StepsThe Journal of Cell Biology, 151
Zhifen Yang, Ju Huang, Jiefei Geng, Usha Nair, D. Klionsky (2006)
Atg22 recycles amino acids to link the degradative and recycling functions of autophagy.Molecular biology of the cell, 17 12
S. Scott, Daniel Nice, J. Nau, L. Weisman, Y. Kamada, I. Keizer-Gunnink, T. Funakoshi, M. Veenhuis, Y. Ohsumi, D. Klionsky (2000)
Apg13p and Vac8p Are Part of a Complex of Phosphoproteins That Are Required for Cytoplasm to Vacuole Targeting*The Journal of Biological Chemistry, 275
ATG genes encode proteins that are required for macroautophagy, the Cvt pathway and/or pexophagy. Using the published Atg protein sequences, we have screened protein and DNA databases to identify putative functional homologs (orthologs) in 21 fungal species (yeast and filamentous fungi) of which the genome sequences were available. For comparison with Atg proteins in higher eukaryotes, also the genomes of Arabidopsis thaliana and Homo sapiens were included. This analysis demonstrated that Atg proteins required for non-selective macroautophagy are conserved from yeast to man, stressing the importance of this process in cell survival and viability. Remarkably, the A. thaliana and human genomes encode multiple proteins highly similar to specific Atg proteins (paralogs), the function of which is unknown. The Atg proteins specifically involved in the Cvt pathway and/or pexophagy showed poor conservation, and were generally not present in A. thaliana and man. Furthermore, the receptor of Cvt cargo, Atg19, was only detected in S. cerevisiae. Nevertheless, Atg11, a protein that links receptor-bound cargo (peroxisomes, Cvt bodies) to the autophagic machinery was identified in all yeast species and filamentous fungi under study. This suggests that in fungi an organism-specific form of selective autophagy may occur, for which specialized Atg proteins have evolved.
Autophagy – Taylor & Francis
Published: Mar 27, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.