Access the full text.
Sign up today, get DeepDyve free for 14 days.
H. Kohl, H. Rose (1985)
Theory of image formation by inelastically scattered electrons in the electron microscopeAdvances in electronics and electron physics, 65
(1969)
private communication
P. Nellist, M. Chisholm, N. Dellby, O. Krivanek, M. Murfitt, Z. Szilagyi, A. Lupini, A. Borisevich, W. Sides, S. Pennycook (2004)
Direct Sub-Angstrom Imaging of a Crystal LatticeScience, 305
K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita, S. Iijima (2007)
Imaging active topological defects in carbon nanotubes.Nature nanotechnology, 2 6
J. Frank (2006)
Three-Dimensional Electron Microscopy of Macromolecular Assemblies
M. Ardenne (1985)
On the History of Scanning Electron Microscopy, of the Electron Microprobe, and of Early Contributions to Transmission Electron Microscopy*
(1971)
Abbildungseigenschaften sphärisch korrigierter elektronenoptischer Achromate
M. Ardenne (1940)
Elektronen-Übermikroskopie : Physik, Technik, Ergebnisse
O. Krivanek, N. Dellby, M. Murfitt, M. Chisholm, T. Pennycook, K. Suenaga, V. Nicolosi (2010)
Gentle STEM: ADF imaging and EELS at low primary energies $Ultramicroscopy, 110
L. Swanson, N. Martin (1975)
Field electron cathode stability studies: Zirconium/tungsten thermal‐field cathode
A. Crewe, J. Wall, L. Welter (1968)
A High‐Resolution Scanning Transmission Electron MicroscopeJournal of Applied Physics, 39
(1964)
Correction of spherical aberration with combined quadrupoleoctopole units
M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban (1998)
Electron microscopy image enhancedNature, 392
O. Krivanek, N. Dellby, A. Lupini (1999)
Towards sub-Å electron beamsUltramicroscopy, 78
H. Sawada, Y. Tanishiro, Nobuhiro Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Takayanagi (2009)
STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun.Journal of electron microscopy, 58 6
(1979)
Hexapole spherical-aberration corrector
P. Hawkes (2009)
Cold field emission and the scanning transmission electron microscope
O. Krivanek, N. Dellby, R. Keyse, M. Murfitt, C. Own, Z. Szilagyi (2008)
CHAPTER 3 – Advances in Aberration-Corrected Scanning Transmission Electron Microscopy and Electron Energy-Loss SpectroscopyAdvances in Imaging and Electron Physics, 153
O. Scherzer (1947)
Spharische und chromatische Korrektur von Elektronen-LinsenOptik, 2
E. Kirkland (1998)
Advanced Computing in Electron Microscopy
P. Batson (2009)
Control of parasitic aberrations in multipole optics.Journal of electron microscopy, 58 3
(1987)
Low-workfunction field-emission source for high-resolution EELS
Kazu Suenaga, Kazu Suenaga, M. Tencé, C. Mory, Christian Colliex, Christian Colliex, Haruhito Kato, Toshiya Okazaki, Hisanori Shinohara, K. Hirahara, S. Bandow, Sumio Iijima, Sumio Iijima (2000)
Element-selective single atom imaging.Science, 290 5500
A. Crewe, J. Wall, J. Langmore (1970)
Visibility of Single AtomsScience, 168
L. Marton, G. Weiss (1958)
Advances in Electronics and Electron PhysicsPhysics Today, 13
M. Isaacson, D. Kopf, M. Utlaut, N. Parker, A. Crewe (1977)
Direct observations of atomic diffusion by scanning transmission electron microscopy.Proceedings of the National Academy of Sciences of the United States of America, 74 5
Y. Hernández, V. Nicolosi, M. Lotya, F. Blighe, Zhenyu Sun, S. De, I. Mcgovern, B. Holland, Michelle Byrne, Y. Gun’ko, John Boland, Peter Niraj, G. Duesberg, Satheesh Krishnamurti, R. Goodhue, J. Hutchison, V. Scardaci, A. Ferrari, J. Coleman (2008)
High-yield production of graphene by liquid-phase exfoliation of graphite.Nature nanotechnology, 3 9
T. Ebbesen (1997)
Physical Properties of Carbon Nanotubes
A. Crewe (2009)
Chapter 1 The Work of Albert Victor Crewe on the Scanning Transmission Electron Microscope and Related TopicsAdvances in Imaging and Electron Physics, 159
Peter Hawkes (2009)
Aberration correction past and presentPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367
O. Krivanek, Jonathan Ursin, N. Bacon, G. Corbin, N. Dellby, P. Hrnčiřík, M. Murfitt, C. Own, Z. Szilagyi (2009)
High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopyPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367
A. Crewe, D. Eggenberger, J. Wall, L. Welter (1968)
Electron Gun Using a Field Emission SourceReview of Scientific Instruments, 39
D. Muller, L. Kourkoutis, M. Murfitt, J. Song, J. Song, H. Hwang, J. Silcox, N. Dellby, O. Krivanek (2008)
Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected MicroscopyScience, 319
V. Beck, A. Crewe (1974)
A Quadrupole Octupole Corrector for a 100 keV STEM, 32
K. Suenaga, Y. Sato, Zheng Liu, H. Kataura, T. Okazaki, K. Kimoto, H. Sawada, Takeo Sasaki, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo (2009)
Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage.Nature chemistry, 1 5
H. Sawada, F. Hosokawa, T. Kaneyama, Toshihiro Ishizawa, M. Terao, M. Kawazoe, T. Sannomiya, T. Tomita, Y. Kondo, Takayuki Tanaka, Y. Oshima, Y. Tanishiro, N. Yamamoto, K. Takayanagi (2007)
Achieving 63 pm Resolution in Scanning Transmission Electron Microscope with Spherical Aberration CorrectorJapanese Journal of Applied Physics, 46
G. Bond, I. Robertson, F. Zeides, H. Birnbaum (1987)
‘Sub-threshold’ electron irradiation damage in hydrogen-charged aluminiumPhilosophical Magazine, 55
W. Qian, M. Scheinfein, J. Spence (1993)
Brightness measurements of nanometer-sized field-emission-electron sourcesJournal of Applied Physics, 73
J. Wall (1979)
Limits on visibility of single heavy atoms in the scanning transmission electron microscope: an experimental study
P. Batson, N. Dellby, O. Krivanek (2002)
Sub-ångstrom resolution using aberration corrected electron opticsNature, 418
P. Batson (2012)
Aberration Corrected Electron Microscopy
R. Egerton (2007)
Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy.Ultramicroscopy, 107 8
N. Alem, R. Erni, C. Kisielowski, M. Rossell, W. Gannett, A. Zettl (2009)
Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopyPhysical Review B, 80
R. Pantelic, Jannik Meyer, U. Kaiser, W. Baumeister, J. Plitzko (2010)
Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples.Journal of structural biology, 170 1
S. Rashkeev, A. Lupini, S. Overbury, S. Pennycook, S. Pantelides (2007)
Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructuresPhysical Review B, 76
E. Cosgriff, M. Oxley, Leslie Allen, S. Pennycook (2005)
The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope.Ultramicroscopy, 102 4
Paul Voyles, David Muller, J. Grazul, P. Citrin, H. Gossmann (2002)
Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk SiNature, 416
P. Hartel, H. Rose, C. Dinges (1996)
Conditions and reasons for incoherent imaging in STEMUltramicroscopy, 63
D. Muller, J. Silcox (1995)
Delocalization in inelastic scatteringUltramicroscopy, 59
Maximilian Haider, P. Hartel, H. Müller, S. Uhlemann, J. Zach (2009)
Current and future aberration correctors for the improvement of resolution in electron microscopyPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367
Z. Shao (1988)
On the fifth order aberration in a sextupole corrected probe forming systemReview of Scientific Instruments, 59
A. Lupini (2001)
Aberration correction in STEM
(2009)
Graphene at the EdgeScience, 323
G. Archard (1955)
TWO NEW SIMPLIFIED SYSTEMS FOR THE CORRECTION OF SPHERICAL ABERRATION IN ELECTRON LENSES, 68
E. Martin, J. Trolan, W. Dyke (1960)
Stable, High Density Field Emission Cold CathodeJournal of Applied Physics, 31
O. Krivanek, M. Chisholm, V. Nicolosi, T. Pennycook, G. Corbin, N. Dellby, M. Murfitt, C. Own, Z. Szilagyi, M. Oxley, S. Pantelides, S. Pennycook (2010)
Atom-by-atom structural and chemical analysis by annular dark-field electron microscopyNature, 464
(1967)
Combined Magnetic and Electrostatic Quadrupole Electron Lenses
V. Beck, A. Crewe (1975)
High resolution imaging properties of the STEM.Ultramicroscopy, 1 2
S. Pennycook (2011)
A Scan Through the History of STEM
P. Batson (2006)
Characterizing probe performance in the aberration corrected STEM.Ultramicroscopy, 106 11-12
K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka (2007)
Element-selective imaging of atomic columns in a crystal using STEM and EELSNature, 450
M. Isaacson (1975)
The microanalysis of light elements using transmitted energy loss electrons.Ultramicroscopy, 1 1
M. Isaacson, D. Kopf, M. Ohtsuki, M. Utlaut (1979)
Atomic imaging using the dark-field annular detector in the stemUltramicroscopy, 4
N. Dellby, O. Krivanek, P. Nellist, Philip Batson, A. Lupini (2001)
Progress in aberration-corrected scanning transmission electron microscopy.Journal of electron microscopy, 50 3
D. Muller (2009)
Structure and bonding at the atomic scale by scanning transmission electron microscopy.Nature materials, 8 4
Zheng Liu, K. Yanagi, K. Suenaga, H. Kataura, S. Iijima (2007)
Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes.Nature nanotechnology, 2 7
J. Zach, M. Haider (1995)
Aberration correction in a low voltage SEM by a multipole correctorNuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, 363
SUPARNA DUTTASINHA (2009)
Graphene: Status and ProspectsScience, 324
H. Rose (2006)
Aberration correction in electron microscopyInternational Journal of Materials Research, 97
H. Harrach (2009)
Chapter 7 ***Development of the 300-kV Vacuum Generator STEM (1985–1996)Advances in Imaging and Electron Physics, 159
A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima (2004)
Direct evidence for atomic defects in graphene layersNature, 430
(2010)
From imaging individual atoms to atomic resolution 2D mapping of bonding
B. Freitag, G. Knippels, S. Kujawa, M. Stam, D. Hubert, P. Tiemeijer, C. Kisielowski, P. Denes, A. Minor, U. Dahmen (2008)
First performance measurements and application results of a new high brightness Schottky field emitter for HR-S/TEM at 80-300kV acceleration voltageMicroscopy and Microanalysis, 14
M. Koshino, Takatsugu Tanaka, N. Solin, K. Suenaga, H. Isobe, E. Nakamura (2007)
Imaging of Single Organic Molecules in MotionScience, 316
J. Venables, G. Cox (1987)
Computer modelling of field emission gun scanning electron microscope columnsUltramicroscopy, 21
O. Krivanek, N. Dellby, M. Murfitt, Z. Szilagyi, M. Chisholm, K. Suenaga (2010)
Slow and Fast Atomic Motion Observed by Aberration-Corrected STEMMicroscopy and Microanalysis, 16
M. Bosman, V. Keast, J. García-Muñoz, A. D’Alfonso, S. Findlay, L. Allen (2007)
Two-dimensional mapping of chemical information at atomic resolution.Physical review letters, 99 8
O. Krivanek, G. Corbin, N. Dellby, B. Elston, R. Keyse, M. Murfitt, C. Own, Z. Szilagyi, J. Woodruff (2008)
An electron microscope for the aberration-corrected era.Ultramicroscopy, 108 3
J. Zach (2009)
Chromatic correction: a revolution in electron microscopy?Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367
Jannik Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, U. Kaiser (2009)
Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes.Nano letters, 9 7
C. Jin, F. Lin, K. Suenaga, S. Iijima (2009)
Fabrication of a freestanding boron nitride single layer and its defect assignments.Physical review letters, 102 19
C. Humphreys (1979)
The scattering of fast electrons by crystalsReports on Progress in Physics, 42
Ç. Girit, Jannik Meyer, R. Erni, M. Rossell, Christian Kisielowski, Li Yang, Cheol-Hwan Park, M. Crommie, M. Cohen, S. Louie, A. Zettl (2009)
Graphene at the Edge: Stability and DynamicsScience, 323
R. Erni, M. Rossell, C. Kisielowski, U. Dahmen (2009)
Atomic-resolution imaging with a sub-50-pm electron probe.Physical review letters, 102 9
A. Bleloch, M. Gass, Linshu Jiang, Peng Wang, B. Mendis, K. Sader (2008)
Aberration Corrected STEM and EELSImaging & Microscopy, 10
V. Zworykin (1942)
The Scanning Electron MicroscopeScientific American, 167
M. Varela, S. Findlay, A. Lupini, H. Christen, A. Borisevich, N. Dellby, O. Krivanek, P. Nellist, M. Oxley, L. Allen, S. Laboratory, Oak Ridge, Tn, U.S.A., U. Melbourne, Victoria, Australia. Seattle, Wa (2004)
Spectroscopic imaging of single atoms within a bulk solid.Physical review letters, 92 9
H. Müller, S. Uhlemann, P. Hartel, M. Haider (2006)
Advancing the Hexapole Cs-Corrector for the Scanning Transmission Electron MicroscopeMicroscopy and Microanalysis, 12
A. Zobelli, A. Gloter, C. Ewels, G. Seifert, C. Colliex (2007)
Electron knock-on cross section of carbon and boron nitride nanotubesPhysical Review B, 75
Michael Pluth, R. Bergman, K. Raymond (2007)
Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate HydrolysisScience, 316
[Aberration-corrected scanning transmission electron microscopes (STEMs) can now produce electron probes as small as 1 Å at 60 keV. This level of performance allows individual light atoms to be imaged in various novel materials including graphene, monolayer boron nitride, and carbon nanotubes. Operation at 60 keV avoids direct knock-on damage in such materials, but some radiation damage often remains, and limits the maximum usable electron dose. Elemental identification by electron energy loss spectroscopy (EELS) is then usefully supplemented by annular dark-field (ADF) imaging, for which the signal is much larger and the spatial resolution significantly better. Because of its strong dependence on the atomic number Z, ADF can be used to identify the chemical type of individual atoms, both heavy and light. We review the instrumental requirements for atomic resolution imaging at 60 keV and lower energies, and we illustrate the kinds of studies that have now become possible by ADF images of graphene, monolayer BN, and single-wall carbon nanotubes, and by ADF images and EEL spectra of carbon nanotubes containing nanopods filled with single atoms of Er. We then discuss likely future developments.]
Published: Dec 16, 2010
Keywords: Primary Energy; Scanning Transmission Electron Microscope; Electron Energy Loss Spectroscopy; Spherical Aberration; Probe Size
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.