Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Pennycook, B. Rafferty (1998)
Towards Atomic Column-by-Column Spectroscopy
P. Nellist, M. Chisholm, N. Dellby, O. Krivanek, M. Murfitt, Z. Szilagyi, A. Lupini, A. Borisevich, W. Sides, S. Pennycook (2004)
Direct Sub-Angstrom Imaging of a Crystal LatticeScience, 305
S. Pennycook, L. Boatner (1988)
Chemically sensitive structure-imaging with a scanning transmission electron microscopeNature, 336
N. Shibata, S. Pennycook, T. Gosnell, G. Painter, W. Shelton, P. Becher (2004)
Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensionsNature, 428
J. Hutchison, J. Titchmarsh, D. Cockayne, R. Doole, C. Hetherington, A. Kirkland, H. Sawada (2005)
A versatile double aberration-corrected, energy filtered HREM/STEM for materials science.Ultramicroscopy, 103 1
O. Krivanek, P. Nellist, N. Dellby, M. Murfitt, Z. Szilagyi (2003)
Towards sub-0.5 A electron beams.Ultramicroscopy, 96 3-4
Chun-Lin Jia, M. Lentzen, K. Urban (2003)
Atomic-Resolution Imaging of Oxygen in Perovskite CeramicsScience, 299
E. Abe, S. Pennycook, A. Tsai (2003)
Direct observation of a local thermal vibration anomaly in a quasicrystalNature, 421
M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban (1998)
Electron microscopy image enhancedNature, 392
O. Krivanek, N. Dellby, A. Lupini (1999)
Towards sub-Å electron beamsUltramicroscopy, 78
S. Pennycook, M. Varela, C. Hetherington, A. Kirkland (2006)
Materials Advances through Aberration-Corrected Electron MicroscopyMRS Bulletin, 31
M. Varela, S. Findlay, A. Lupini, H. Christen, A. Borisevich, N. Dellby, O. Krivanek, P. Nellist, M. Oxley, L. Allen, S. Laboratory, Oak Ridge, Tn, U.S.A., U. Melbourne, Victoria, Australia. Seattle, Wa (2004)
Spectroscopic imaging of single atoms within a bulk solid.Physical review letters, 92 9
J. Buban, K. Matsunaga, J. Chen, N. Shibata, W. Ching, T. Yamamoto, Y. Ikuhara (2006)
Grain Boundary Strengthening in Alumina by Rare Earth ImpuritiesScience, 311
The performance of a newly developed high-resolution 300 kV microscope equipped with a spherical aberration corrector for probe-forming systems is reported. This microscope gave the highest resolution for the distance between atomic columns, as determined by a high-angle annular dark field imaging method using a GaN[211] crystalline specimen, where the distance between the neighboring columns of Ga was 63 pm.
Japanese Journal of Applied Physics – IOP Publishing
Published: Jun 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.