Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Hanley, B. McNeil (1982)
The meaning and use of the area under a receiver operating characteristic (ROC) curve.Radiology, 143 1
Jun-Hua Shen, Hong‐Lin Chen, Jian-Rong Chen, Jiahui Xing, Peng Gu, Bao-Feng Zhu (2016)
Comparison of the Wells score with the revised Geneva score for assessing suspected pulmonary embolism: a systematic review and meta-analysisJournal of Thrombosis and Thrombolysis, 41
F Harrell, Kerry Lee, D. Mark (2005)
Prognostic/Clinical Prediction Models: Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors
F. Regoli, F. Scopigni, F. Leyva, M. Landolina, S. Ghio, M. Tritto, L. Calò, C. Klersy, A. Auricchio (2013)
Validation of Seattle Heart Failure Model for mortality risk prediction in patients treated with cardiac resynchronization therapyEuropean Journal of Heart Failure, 15
L. Lund, L. Edwards, A. Kucheryavaya, C. Benden, A. Dipchand, S. Goldfarb, B. Levvey, B. Meiser, J. Rossano, R. Yusen, J. Stehlik (2015)
The Registry of the International Society for Heart and Lung Transplantation: Thirty-second Official Adult Heart Transplantation Report--2015; Focus Theme: Early Graft Failure.The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 34 10
T. McGinn, G. Guyatt, P. Wyer, David Naylor, I. Stiell, W. Richardson, Rah Cook, Roman Jaeschke, Thomas Newman, J. Nishikawa, Mark Wilson, D. Rennie (2000)
Users ’ Guides to the Medical Literature
M. Pencina, R. Agostino, R. Agostino, R. Vasan (2008)
Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyondStatistics in Medicine, 27
E. Aaronson, Yuchiao Chang, P. Borczuk (2016)
A prediction model to identify patients without a concerning intraabdominal diagnosis.The American journal of emergency medicine, 34 8
Isabel Sala, I. Illán-Gala, D. Alcolea, M. Sánchez-Saudinós, S. Salgado, E. Morenas-Rodriguez, A. Subirana, L. Videla, J. Clarimón, M. Carmona‐Iragui, R. Ribosa‐Nogué, R. Blesa, J. Fortea, A. Lleó (2017)
Diagnostic and Prognostic Value of the Combination of Two Measures of Verbal Memory in Mild Cognitive Impairment due to Alzheimer's Disease.Journal of Alzheimer's disease : JAD, 58 3
T. Sheth, M. Chan, C. Butler, B. Chow, V. Tandon, P. Nagele, A. Mitha, M. Mrkobrada, W. Szczeklik, Lori Stewart, P. Devereaux (2015)
Prognostic capabilities of coronary computed tomographic angiography before non-cardiac surgery: prospective cohort studyThe BMJ, 350
U. Sartipy, U. Dahlström, M. Edner, L. Lund (2014)
Predicting survival in heart failure: validation of the MAGGIC heart failure risk score in 51 043 patients from the Swedish Heart Failure RegistryEuropean Journal of Heart Failure, 16
M. Nayor, R. Vasan (2016)
Recent Update to the US Cholesterol Treatment Guidelines: A Comparison With International Guidelines.Circulation, 133 18
D. Sackett, D. Cook (1993)
Users' guides to the medical literature.JAMA, 270 17
Patrick Heagerty, Yingye Zheng (2005)
Survival Model Predictive Accuracy and ROC CurvesBiometrics, 61
T. Gerds, T. Cai, M. Schumacher (2008)
The Performance of Risk Prediction ModelsBiometrical Journal, 50
B. Wessler, Lana Yh, Whitney Kramer, M. Cangelosi, G. Raman, Jennifer Lutz, D. Kent (2015)
Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model DatabaseCirculation: Cardiovascular Quality and Outcomes, 8
L. Daniels, P. Clopton, C. Defilippi, O. Sanchez, H. Bahrami, J. Lima, R. Tracy, D. Siscovick, A. Bertoni, P. Greenland, M. Cushman, A. Maisel, M. Criqui (2015)
Serial measurement of N-terminal pro-B-type natriuretic peptide and cardiac troponin T for cardiovascular disease risk assessment in the Multi-Ethnic Study of Atherosclerosis (MESA).American heart journal, 170 6
J. Oldgren, Z. Hijazi, J. Lindbäck, J. Alexander, S. Connolly, J. Eikelboom, M. Ezekowitz, C. Granger, E. Hylek, R. Lopes, A. Siegbahn, S. Yusuf, L. Wallentin (2016)
Performance and Validation of a Novel Biomarker-Based Stroke Risk Score for Atrial FibrillationCirculation, 134
Kristin Klein, T. Stafinski, D. Menon (2013)
Predicting Survival after Liver Transplantation Based on Pre-Transplant MELD Score: a Systematic Review of the LiteraturePLoS ONE, 8
N. Cook (2007)
Use and Misuse of the Receiver Operating Characteristic Curve in Risk PredictionCirculation, 115
L. Saxon, D. Hayes, F. Gilliam, P. Heidenreich, J. Day, Milan Seth, T. Meyer, P. Jones, J. Boehmer (2010)
Long-Term Outcome After ICD and CRT Implantation and Influence of Remote Device Follow-Up: The ALTITUDE Survival StudyCirculation, 122
F. Barili, D. Pacini, F. Rosato, M. Roberto, Alberto Battisti, C. Grossi, F. Alamanni, R. Bartolomeo, A. Parolari (2014)
In-hospital mortality risk assessment in elective and non-elective cardiac surgery: a comparison between EuroSCORE II and age, creatinine, ejection fraction score.European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 46 1
A. Plüddemann, E. Wallace, C. Bankhead, C. Keogh, D. Windt, D. Lasserson, R. Galvin, I. Moschetti, K. Kearley, K. O'Brien, S. Sanders, S. Mallett, U. Malanda, Matthew Thompson, T. Fahey, R. Stevens (2014)
Clinical prediction rules in practice: review of clinical guidelines and survey of GPs.The British journal of general practice : the journal of the Royal College of General Practitioners, 64 621
A. Vickers, M. Pepe (2014)
Does the Net Reclassification Improvement Help Us Evaluate Models and Markers?Annals of Internal Medicine, 160
L. Allen, J. Yager, M. Funk, W. Levy, J. Tulsky, M. Bowers, Gwen Dodson, C. O'connor, G. Felker (2008)
Discordance between patient-predicted and model-predicted life expectancy among ambulatory patients with heart failure.JAMA, 299 21
D. Hosmer, S. Lemeshow (1991)
Applied Logistic Regression
G. Collins, J. Reitsma, D. Altman, K. Moons (2015)
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statementBMJ : British Medical Journal, 350
B. calster, D. Nieboer, Y. Vergouwe, B. Cock, M. Pencina, E. Steyerberg (2016)
A calibration hierarchy for risk models was defined: from utopia to empirical data.Journal of clinical epidemiology, 74
A. Vickers, B. calster, E. Steyerberg (2016)
Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic testsThe BMJ, 352
M. Pencina, R. D'Agostino (2015)
Evaluating Discrimination of Risk Prediction Models: The C Statistic.JAMA, 314 10
T. McGinn (2016)
Putting Meaning into Meaningful Use: A Roadmap to Successful Integration of Evidence at the Point of CareJMIR Medical Informatics, 4
E. Wallace, M. Uijen, B. Clyne, Atieh Zarabzadeh, C. Keogh, R. Galvin, Susan Smith, T. Fahey (2016)
Impact analysis studies of clinical prediction rules relevant to primary care: a systematic reviewBMJ Open, 6
TG McGinn, GH Guyatt, PC Wyer, CD Naylor, IG Stiell, WS Richardson (2000)
Users’ guides to the medical literature: XXII: how to use articles about clinical decision rules, 284
N. Stone, Jennifer Robinson, A. Lichtenstein, C. Noel, B. Merz, D. Lloyd‐Jones, C. Blum, P. Mcbride, R. Eckel, F. Schwartz, A. Goldberg, Susan Shero, Rn, D. Gordon, Sidney Smith, D. Levy, K. Watson, P. Wilson, Karen Eddleman, N. Jarrett, K. Labresh, Lev Nevo, J. Wnek, Jeffrey Anderson, J. Halperin, N. Albert, J. Hochman, B. Bozkurt, R. Kovacs, R. Brindis, Macc Ohman, L. Curtis, S. Pressler, D. DeMets, F. Sellke, R. Guyton, W. Shen, G. Tomaselli, Stone Nj, Robinson J, Lichtenstein Ah, M. Bairey, Blum Cn, Eckel Cb, Goldberg Rh, Gordon Ac, Levy D, Lloyd-Jones Dm, P. Mcbride, Js Schwartz, Shero St, Smith Sc, W. Wilson (2014)
2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation, 129 25 Suppl 2
N. Cook, P. Ridker (2009)
Advances in Measuring the Effect of Individual Predictors of Cardiovascular Risk: The Role of Reclassification MeasuresAnnals of Internal Medicine, 150
J. Muntwyler, G. Abetel, C. Gruner, F. Follath (2002)
One-year mortality among unselected outpatients with heart failure.European heart journal, 23 23
Accurate information regarding prognosis is fundamental to optimal clinical care. The best approach to assess patient prognosis relies on prediction models that simultaneously consider a number of prognostic factors and provide an estimate of patients’ absolute risk of an event. Such prediction models should be characterized by adequately discriminating between patients who will have an event and those who will not and by adequate calibration ensuring accurate prediction of absolute risk. This Users’ Guide will help clinicians understand the available metrics for assessing discrimination, calibration, and the relative performance of different prediction models. This article complements existing Users’ Guides that address the development and validation of prediction models. Together, these guides will help clinicians to make optimal use of existing prediction models.
JAMA – American Medical Association
Published: Oct 10, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.