Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Inhibition of intestinal biotin absorption by chronic alcohol feeding: cellular and molecular mechanisms

Inhibition of intestinal biotin absorption by chronic alcohol feeding: cellular and molecular... Abstract The water-soluble vitamin biotin is essential for normal cellular functions and its deficiency leads to a variety of clinical abnormalities. Mammals obtain biotin from exogenous sources via intestinal absorption, a process mediated by the sodium-dependent multivitamin transporter (SMVT). Chronic alcohol use in humans is associated with a significant reduction in plasma biotin levels, and animal studies have shown inhibition in intestinal biotin absorption by chronic alcohol feeding. Little, however, is known about the cellular and molecular mechanisms involved in the inhibition in intestinal biotin transport by chronic alcohol use. These mechanisms were investigated in this study by using rats and transgenic mice carrying the human full-length SLC5A6 5′-regulatory region chronically fed alcohol liquid diets; human intestinal epithelial Caco-2 cells chronically exposed to alcohol were also used as models. The results showed chronic alcohol feeding of rats to lead to a significant inhibition in carrier-mediated biotin transport events across jejunal brush border and basolateral membrane domains. This inhibition was associated with a significant reduction in level of expression of the SMVT protein, mRNA, and heterogenous nuclear RNA. Chronic alcohol feeding also inhibited carrier-mediated biotin uptake in rat colon. Studies with transgenic mice confirmed the above findings and further showed chronic alcohol feeding significantly inhibited the activity of SLC5A6 5′-regulatory region. Finally, chronic exposure of Caco-2 cells to alcohol led to a significant decrease in the activity of both promoters P1 and P2 of the human SLC5A6 gene. These studies identify for the first time the cellular and molecular parameters of the intestinal biotin absorptive processes that are affected by chronic alcohol feeding. transporter SMVT uptake promoter vitamin Copyright © 2011 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png AJP - Gastrointestinal and Liver Physiology The American Physiological Society

Inhibition of intestinal biotin absorption by chronic alcohol feeding: cellular and molecular mechanisms

Loading next page...
 
/lp/the-american-physiological-society/inhibition-of-intestinal-biotin-absorption-by-chronic-alcohol-feeding-B06o4SniV3

References (59)

Publisher
The American Physiological Society
Copyright
Copyright © 2011 the American Physiological Society
ISSN
0193-1857
eISSN
1522-1547
DOI
10.1152/ajpgi.00465.2010
pmid
21148397
Publisher site
See Article on Publisher Site

Abstract

Abstract The water-soluble vitamin biotin is essential for normal cellular functions and its deficiency leads to a variety of clinical abnormalities. Mammals obtain biotin from exogenous sources via intestinal absorption, a process mediated by the sodium-dependent multivitamin transporter (SMVT). Chronic alcohol use in humans is associated with a significant reduction in plasma biotin levels, and animal studies have shown inhibition in intestinal biotin absorption by chronic alcohol feeding. Little, however, is known about the cellular and molecular mechanisms involved in the inhibition in intestinal biotin transport by chronic alcohol use. These mechanisms were investigated in this study by using rats and transgenic mice carrying the human full-length SLC5A6 5′-regulatory region chronically fed alcohol liquid diets; human intestinal epithelial Caco-2 cells chronically exposed to alcohol were also used as models. The results showed chronic alcohol feeding of rats to lead to a significant inhibition in carrier-mediated biotin transport events across jejunal brush border and basolateral membrane domains. This inhibition was associated with a significant reduction in level of expression of the SMVT protein, mRNA, and heterogenous nuclear RNA. Chronic alcohol feeding also inhibited carrier-mediated biotin uptake in rat colon. Studies with transgenic mice confirmed the above findings and further showed chronic alcohol feeding significantly inhibited the activity of SLC5A6 5′-regulatory region. Finally, chronic exposure of Caco-2 cells to alcohol led to a significant decrease in the activity of both promoters P1 and P2 of the human SLC5A6 gene. These studies identify for the first time the cellular and molecular parameters of the intestinal biotin absorptive processes that are affected by chronic alcohol feeding. transporter SMVT uptake promoter vitamin Copyright © 2011 the American Physiological Society

Journal

AJP - Gastrointestinal and Liver PhysiologyThe American Physiological Society

Published: Mar 1, 2011

There are no references for this article.