Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Rostrup-Nielsen (2004)
Fuels and Energy for the Future: The Role of CatalysisCatalysis Reviews, 46
S. Trasatti (1984)
Electrocatalysis in the anodic evolution of oxygen and chlorineElectrochimica Acta, 29
Wei-Fu Chen, K. Sasaki, Chao Ma, A. Frenkel, N. Marinkovic, J. Muckerman, Yimei Zhu, R. Adzic (2012)
Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets.Angewandte Chemie, 51 25
D. Sokolsky, V. Palanker, E. Baybatyrov (1975)
Electrochemical hydrogen reactions on tungsten carbideElectrochimica Acta, 20
Heron Vrubel, Xile Hu (2012)
Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions.Angewandte Chemie, 51 51
R. Levie (1999)
The electrolysis of waterJournal of Electroanalytical Chemistry, 476
Desheng Kong, J. Cha, Haotian Wang, H. Lee, Yi Cui (2013)
First-row transition metal dichalcogenide catalysts for hydrogen evolution reactionEnergy and Environmental Science, 6
Mark Lukowski, Andrew Daniel, Fei Meng, Audrey Forticaux, Linsen Li, Song Jin (2013)
Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets.Journal of the American Chemical Society, 135 28
J. Greeley, T. Jaramillo, J. Bonde, I. Chorkendorff, J. Nørskov (2006)
Computational high-throughput screening of electrocatalytic materials for hydrogen evolutionNature Materials, 5
M. Brorson, A. Carlsson, H. Topsøe (2007)
The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEMCatalysis Today, 123
E. Furimsky (2003)
Metal carbides and nitrides as potential catalysts for hydroprocessingApplied Catalysis A-general, 240
I. Nikolov, K. Petrov, T. Vitanov, A. Guschev (1983)
Tungsten carbide cathodes for electrolysis of sulphuric acid solutionsInternational Journal of Hydrogen Energy, 8
B. Hinnemann, P. Moses, J. Bonde, K. Jørgensen, J. Nielsen, S. Horch, I. Chorkendorff, J. Nørskov (2005)
Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution.Journal of the American Chemical Society, 127 15
(1789)
van Troostwijk and J
Bingfei Cao, G. Veith, J. Neuefeind, R. Adzic, P. Khalifah (2013)
Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction.Journal of the American Chemical Society, 135 51
A. Walton, J. Lauritsen, H. Topsøe, F. Besenbacher (2013)
MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopyJournal of Catalysis, 308
Haotian Wang, Zhiyi Lu, Shicheng Xu, Desheng Kong, J. Cha, G. Zheng, Po-Chun Hsu, Kai Yan, D. Bradshaw, F. Prinz, Yi Cui (2013)
Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reactionProceedings of the National Academy of Sciences, 110
I. Nikolov, T. Vitanov, V. Nikolova (1980)
The effect of the method of preparation on the catalytic activity of tungsten carbide for hydrogen evolutionJournal of Power Sources, 5
Junfeng Xie, Hao Zhang, Shuang Li, Ruoxing Wang, Xu Sun, Min Zhou, Jingfang Zhou, X. Lou, Yi Xie (2013)
Defect‐Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen EvolutionAdvanced Materials, 25
(1952)
J . O . M . Bockris and E . C . Potter
Jaemyung Kim, Segi Byun, A. Smith, Jin Yu, Jiaxing Huang (2013)
Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration.The journal of physical chemistry letters, 4 8
Yong Zhao, K. Kamiya, K. Hashimoto, Shuji Nakanishi (2013)
Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybrid in situ.Angewandte Chemie, 52 51
V. Schwartz, S. Oyama, Jing Chen (2000)
Supported Bimetallic Nb−Mo Carbide: Synthesis, Characterization, and ReactivityPreprints-American Chemical Society Division of Petroleum Chemistry, 43
Tanyuan Wang, Lu Liu, Zhiwei Zhu, P. Papakonstantinou, Jingbo Hu, Hongyun Liu, Meixian Li (2013)
Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrodeEnergy and Environmental Science, 6
R. Parsons, J. Bockris (1951)
Calculation of the energy of activation of discharge of hydrogen ions at metal electrodesTransactions of The Faraday Society, 47
J. Bockris (2002)
The origin of ideas on a Hydrogen Economy and its solution to the decay of the environmentInternational Journal of Hydrogen Energy, 27
E. Rees, K. Essaki, C.D.A. Brady, G. Burstein (2009)
Hydrogen electrocatalysts from microwave-synthesised nanoparticulate carbidesJournal of Power Sources, 188
K. Barraclough (2001)
I and iBMJ : British Medical Journal, 323
Ya Yan, Xiaoming Ge, Zhaolin Liu, Jing‐Yuan Wang, Jong‐Min Lee, Xin Wang (2013)
Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction.Nanoscale, 5 17
Mark Weidman, D. Esposito, Yeh-Chun Hsu, Jingguang Chen (2012)
Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH rangeJournal of Power Sources, 202
MD KINAMI, I. Miyazaki, Mdi
AND T
Wei-Fu Chen, Chiu-Hui Wang, K. Sasaki, N. Marinkovic, Wenqian Xu, J. Muckerman, Yimei Zhu, R. Adzic (2013)
Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen productionEnergy and Environmental Science, 6
Daniel Merki, Xile Hu (2011)
Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalystsEnergy and Environmental Science, 4
G. Tsirlina, O. Petrii (1987)
Hydrogen evolution on smooth stoichiometric tungsten and chromium carbidesElectrochimica Acta, 32
M. Breysse, E. Furimsky, S. Kasztelan, M. Lacroix, G. Pérot (2002)
HYDROGEN ACTIVATION BY TRANSITION METAL SULFIDESCatalysis Reviews, 44
Shanshan Ji, Zhe Yang, C. Zhang, Zhenyang Liu, W. Tjiu, I. Phang, Zheng Zhang, Jisheng Pan, Tianxi Liu (2013)
Exfoliated MoS2 nanosheets as efficient catalysts for electrochemical hydrogen evolutionElectrochimica Acta, 109
E. Popczun, James McKone, Carlos Read, A. Biacchi, Alex Wiltrout, N. Lewis, R. Schaak (2013)
Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction.Journal of the American Chemical Society, 135 25
S. Oyama, T. Gott, Haiyan Zhao, Yong-Kul Lee (2009)
Transition metal phosphide hydroprocessing catalysts: A reviewCatalysis Today, 143
M. Grätzel (2001)
Photoelectrochemical cellsNature, 414
D. Voiry, H. Yamaguchi, Junwen Li, Rafael Silva, D. Alves, T. Fujita, Mingwei Chen, Tewodros Asefa, V. Shenoy, G. Eda, M. Chhowalla (2012)
Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.Nature materials, 12 9
Sophie Carenco, D. Portehault, C. Boissière, N. Mézailles, C. Sanchez (2013)
Nanoscaled metal borides and phosphides: recent developments and perspectives.Chemical reviews, 113 10
in Catalysis, eds
C. Giovanni, Wei-an Wang, S. Nowak, J. Greneche, H. Lecoq, L. Mouton, M. Giraud, C. Tard (2014)
Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived Electrocatalytic Molecular Hydrogen Evolution in Neutral WaterACS Catalysis, 4
Junfeng Xie, Jiajia Zhang, Shuang Li, Fabian Grote, Xiaodong Zhang, Hao Zhang, Ruoxing Wang, Y. Lei, B. Pan, Yi Xie (2013)
Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution.Journal of the American Chemical Society, 135 47
A. Raje, D. Dadyburjor (1993)
Hydrodesulfurization of thiophene on highly deactivated coal-liquid hydrotreatment catalyst: effect of deposited iron sulfideIndustrial & Engineering Chemistry Research, 32
S. Fletcher (2009)
Tafel slopes from first principlesJournal of Solid State Electrochemistry, 13
Haotian Wang, Desheng Kong, P. Johanes, J. Cha, G. Zheng, Kai Yan, Nian Liu, Yi Cui (2013)
MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces.Nano letters, 13 7
Xiao Huang, Zhiyuan Zeng, Hua Zhang (2013)
Metal dichalcogenide nanosheets: preparation, properties and applications.Chemical Society reviews, 42 5
Angel Garcia-Esparza, D. Cha, Yiwei Ou, J. Kubota, K. Domen, K. Takanabe (2013)
Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting.ChemSusChem, 6 1
Zhuangzhi Wu, B. Fang, Zhiping Wang, Changlong Wang, Zhihong Liu, Fang-yang Liu, Wen Wang, A. Alfantazi, Dezhi Wang, D. Wilkinson (2013)
MoS2 Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution ReactionACS Catalysis, 3
(2013)
Angew
C. Yu, S. Ramanathan, B. Dhandapani, Jingguang Chen, S. Oyama (1997)
Bimetallic Nb−Mo Carbide Hydroprocessing Catalysts: Synthesis, Characterization, and Activity StudiesJournal of Physical Chemistry B, 101
H. Karunadasa, E. Montalvo, Yujie Sun, M. Majda, J. Long, Christopher Chang (2012)
A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen GenerationScience, 335
W. Choi, B. Wood, E. Schwegler, T. Ogitsu (2013)
Site-Dependent Free Energy Barrier for Proton Reduction on MoS2 EdgesJournal of Physical Chemistry C, 117
(2012)
Energy Environ
J. Bockris, E. Potter (1952)
The Mechanism of the Cathodic Hydrogen Evolution ReactionJournal of The Electrochemical Society, 99
T. Jaramillo, K. Jørgensen, J. Bonde, J. Nielsen, S. Horch, I. Chorkendorff (2007)
Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 NanocatalystsScience, 317
G. Olah (2013)
Towards oil independence through renewable methanol chemistry.Angewandte Chemie, 52 1
P. Żółtowski (1980)
Hydrogen evolution reaction on smooth tungsten carbide electrodesElectrochimica Acta, 25
Heron Vrubel, T. Moehl, M. Grätzel, Xile Hu (2013)
Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction.Chemical communications, 49 79
Desheng Kong, Haotian Wang, J. Cha, M. Pasta, K. Koski, Jie Yao, Yi Cui (2013)
Synthesis of MoS2 and MoSe2 films with vertically aligned layers.Nano letters, 13 3
(1975)
Electrochim
Ping Liu, Jose Rodriguez, Takeshi Asakura, João Gomes, Ken'ichi Nakamura (2005)
Desulfurization reactions on Ni2P(001) and α-Mo2C(001) surfaces : Complex role of P and C sitesJournal of Physical Chemistry B, 109
A. Tuxen, Henrik Füchtbauer, B. Temel, B. Hinnemann, H. Topsøe, K. Knudsen, F. Besenbacher, J. Lauritsen (2012)
Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co–Mo–S hydrotreating catalystsJournal of Catalysis, 295
J. Coleman, M. Lotya, A. O’Neill, S. Bergin, P. King, U. Khan, Karen Young, A. Gaucher, S. De, Ronan Smith, I. Shvets, S. Arora, George Stanton, Hye-Young Kim, Kangho Lee, Gyu-Tae Kim, G. Duesberg, T. Hallam, J. Boland, J. Wang, J. Donegan, J. Grunlan, Gregory Moriarty, A. Shmeliov, R. Nicholls, J. Perkins, E. Grieveson, K. Theuwissen, D. McComb, P. Nellist, V. Nicolosi (2011)
Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered MaterialsScience, 331
Wei-Fu Chen, S. Iyer, S. Iyer, K. Sasaki, Chiu-Hui Wang, Yimei Zhu, J. Muckerman, E. Fujita (2013)
Biomass-derived electrocatalytic composites for hydrogen evolutionEnergy and Environmental Science, 6
D. Ham, R. Ganesan, J. Lee (2008)
Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from waterInternational Journal of Hydrogen Energy, 33
Zhebo Chen, D. Cummins, Benjamin Reinecke, E. Clark, M. Sunkara, T. Jaramillo (2011)
Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials.Nano letters, 11 10
S. Wirth, F. Harnisch, M. Weinmann, U. Schröder (2012)
Comparative study of IVB–VIB transition metal compound electrocatalysts for the hydrogen evolution reactionApplied Catalysis B-environmental, 126
L. Hansen, Q. Ramasse, C. Kisielowski, M. Brorson, Erik Johnson, H. Topsøe, S. Helveg (2011)
Atomic-scale edge structures on industrial-style MoS2 nanocatalysts.Angewandte Chemie, 50 43
J. Schlatter, S. Oyama, J. Metcalfe, J. Lambert (1988)
Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinolineIndustrial & Engineering Chemistry Research, 27
Wei-Fu Chen, J. Muckerman, E. Fujita (2013)
Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts.Chemical communications, 49 79
F. Harnisch, G. Sievers, U. Schröder (2009)
Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutionsApplied Catalysis B-environmental, 89
R. Chianelli, G. Berhault, P. Raybaud, S. Kasztelan, J. Hafner, H. Toulhoat (2002)
Periodic trends in hydrodesulfurization: in support of the Sabatier principleApplied Catalysis A-general, 227
Lei Liao, Sinong Wang, Jing-jing Xiao, Xiaojun Bian, Yahong Zhang, Micheál Scanlon, Xile Hu, Yi Tang, Baohong Liu, H. Girault (2014)
A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reactionEnergy and Environmental Science, 7
J. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard (2011)
Density functional theory in surface chemistry and catalysisProceedings of the National Academy of Sciences, 108
Y. Tachibana, L. Vayssieres, J. Durrant (2012)
Artificial photosynthesis for solar water-splittingNature Photonics, 6
R. Armstrong, M. Bell (1978)
Tungsten carbide catalysts for hydrogen evolutionElectrochimica Acta, 23
You Xu, R. Wu, Jingfang Zhang, Yanmei Shi, Bin Zhang (2013)
Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction.Chemical communications, 49 59
R. Levy, M. Boudart (1973)
Platinum-Like Behavior of Tungsten Carbide in Surface CatalysisScience, 181
F. Besenbacher, M. Brorson, B. Clausen, S. Helveg, B. Hinnemann, J. Kibsgaard, J. Lauritsen, P. Moses, J. Nørskov, H. Topsøe (2008)
Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effectsCatalysis Today, 130
H. Tributsch, J. Bennett (1977)
Electrochemistry and photochemistry of MoS2 layer crystals. IJournal of Electroanalytical Chemistry, 81
Jieun Yang, D. Voiry, Seongjoon Ahn, Dongwoon Kang, A. Kim, M. Chhowalla, H. Shin (2013)
Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution.Angewandte Chemie, 52 51
Ping Liu, J. Rodríguez, J. Muckerman (2004)
Desulfurization of SO2 and Thiophene on Surfaces and Nanoparticles of Molybdenum Carbide: Unexpected Ligand and Steric EffectsJournal of Physical Chemistry B, 108
S. Ramanathan, S. Oyama (1995)
New catalysts for hydroprocessing: Transition metal carbides and nitridesThe Journal of Physical Chemistry, 99
J. Kibsgaard, Zhebo Chen, Benjamin Reinecke, T. Jaramillo (2012)
Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis.Nature materials, 11 11
Timothy Cook, Dilek Dogutan, Steven Reece, Y. Surendranath, Thomas Teets, D. Nocera (2010)
Solar energy supply and storage for the legacy and nonlegacy worlds.Chemical reviews, 110 11
A. Laursen, Søren Kegnæs, S. Dahl, I. Chorkendorff (2012)
Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolutionEnergy and Environmental Science, 5
J. Nørskov, T. Bligaard, Á. Logadóttir, J. Kitchin, Jingguang Chen, S. Pandelov, U. Stimming (2005)
Trends in the exchange current for hydrogen evolutionJournal of The Electrochemical Society, 152
Yanguang Li, Hailiang Wang, Liming Xie, Yongye Liang, Guosong Hong, H. Dai (2011)
MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction.Journal of the American Chemical Society, 133 19
M. Chhowalla, H. Shin, G. Eda, Lain‐Jong Li, K. Loh, Hua Zhang (2013)
The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets.Nature chemistry, 5 4
Ping Liu, J. Rodríguez (2005)
Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect.Journal of the American Chemical Society, 127 42
Progress in catalysis is driven by society's needs. The development of new electrocatalysts to make renewable and clean fuels from abundant and easily accessible resources is among the most challenging and demanding tasks for today's scientists and engineers. The electrochemical splitting of water into hydrogen and oxygen has been known for over 200 years, but in the last decade and motivated by the perspective of solar hydrogen production, new catalysts made of earth-abundant materials have emerged. Here we present an overview of recent developments in the non-noble metal catalysts for electrochemical hydrogen evolution reaction (HER). Emphasis is given to the nanostructuring of industrially relevant hydrotreating catalysts as potential HER electrocatalysts. The new syntheses and nanostructuring approaches might pave the way for future development of highly efficient catalysts for energy conversion.
Chemical Society Reviews – Royal Society of Chemistry
Published: Aug 18, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.