Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Weber, J. Muijsers, J. Niemantsverdriet (1995)
Structure of Amorphous MoS3The Journal of Physical Chemistry, 99
(2004)
The Hydrogen Economy
M. DuBois, D. Dubois (2009)
The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation.Chemical Society reviews, 38 1
A. Nidola, R. Schira (1986)
New sulphide coatings for hydrogen evolution in KOH electrolysisInternational Journal of Hydrogen Energy, 11
J. Muijsers, T. Weber, R. Hardeveld, H. Zandbergen, J. Niemantsverdriet (1995)
Sulfidation study of molybdenum oxide using MoO3/SiO2/Si(100) model catalysts and Mo3IV-sulfur cluster compoundsJournal of Catalysis, 157
M. Brorson, A. Carlsson, H. Topsøe (2007)
The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEMCatalysis Today, 123
S. Helveg, J. Lauritsen, E. Lægsgaard, I. Stensgaard, J. Nørskov, B. Clausen, H. Topsøe, F. Besenbacher (2000)
Atomic-scale structure of single-layer MoS2 nanoclustersPhysical review letters, 84 5
J. Lauritsen, S. Helveg, E. Lægsgaard, I. Stensgaard, B. Clausen, H. Topsøe, F. Besenbacher (2001)
Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalystsJournal of Catalysis, 197
Xu Zong, Hongjian Yan, Guopeng Wu, Guijun Ma, Fuyu Wen, Lu Wang, Can Li (2008)
Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation.Journal of the American Chemical Society, 130 23
D. Bélanger, G. Laperrière, B. Marsan (1993)
The electrodeposition of amorphous molybdenum sulfideJournal of Electroanalytical Chemistry, 347
J. Bonde, P. Moses, T. Jaramillo, J. Nørskov, I. Chorkendorff (2008)
Hydrogen evolution on nano-particulate transition metal sulfides.Faraday discussions, 140
B. Hinnemann, P. Moses, J. Bonde, K. Jørgensen, J. Nielsen, S. Horch, I. Chorkendorff, J. Nørskov (2005)
Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution.Journal of the American Chemical Society, 127 15
P. Vignais, B. Billoud, Jacques Meyer (2001)
Classification and phylogeny of hydrogenases.FEMS microbiology reviews, 25 4
W. Jaegermann, H. Tributsch (1988)
Interfacial properties of semiconducting transition metal chalcogenidesProgress in Surface Science, 29
Y. Okamoto, Kenta Tamura, T. Kubota (2010)
Edge-differentiating deposition of Co on SiO(2)-supported MoS(2) particles.Chemical communications, 46 16
M. Hernández-Alonso, F. Fresno, S. Suárez, J. Coronado (2009)
Development of alternative photocatalysts to TiO2: Challenges and opportunitiesEnergy and Environmental Science, 2
(2011)
Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in waterChemical Science, 2
M. Agarwal, K. Reddy, H. Patel (1979)
Growth of tungstenite single crystals by direct vapour transport methodJournal of Crystal Growth, 46
Poulomi Roy, S. Srivastava (2006)
Chemical bath deposition of MoS2 thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphurThin Solid Films, 496
J. Lauritsen, Mikkel Bollinger, E. Lægsgaard, K. Jacobsen, J. Nørskov, B. Clausen, H. Topsøe, F. Besenbacher (2004)
Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalystsJournal of Catalysis, 221
Shigeki Kanda, T. Akita, M. Fujishima, H. Tada (2011)
Facile synthesis and catalytic activity of MoS(2)/TiO(2) by a photodeposition-based technique and its oxidized derivative MoO(3)/TiO(2) with a unique photochromism.Journal of colloid and interface science, 354 2
V. Artero, M. Fontecave (2005)
Some general principles for designing electrocatalysts with hydrogenase activityCoordination Chemistry Reviews, 249
T. Jaramillo, J. Bonde, Jingdong Zhang, B. Ooi, K. Andersson, J. Ulstrup, I. Chorkendorff (2008)
Hydrogen Evolution on Supported Incomplete Cubane-type (Mo3S4) 4+ ElectrocatalystsJournal of Physical Chemistry C, 112
J. Bockris, E. Potter (1952)
The Mechanism of the Cathodic Hydrogen Evolution ReactionJournal of The Electrochemical Society, 99
T. Jaramillo, K. Jørgensen, J. Bonde, J. Nielsen, S. Horch, I. Chorkendorff (2007)
Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 NanocatalystsScience, 317
J. Thomas (1961)
Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metalsTransactions of The Faraday Society, 57
A. Sobczyński, A. Yildiz, Allen Bard, A. Campion, Marye Fox, T. Mallouk, Stephen Webber, J. White (1988)
Tungsten disulfide: a novel hydrogen evolution catalyst for water decompositionThe Journal of Physical Chemistry, 92
H. Park, J. Holt (2010)
Recent advances in nanoelectrode architecture for photochemical hydrogen productionEnergy and Environmental Science, 3
T. Spalvins (1987)
A review of recent advances in solid film lubricationJournal of Vacuum Science and Technology, 5
C. Tard, C. Pickett (2009)
Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases.Chemical reviews, 109 6
E. Ponomarev, M. Neumann-Spallart, G. Hodes, C. Lévy‐Clément (1996)
Electrochemical deposition of MoS2 thin films by reduction of tetrathiomolybdateThin Solid Films, 280
Y. Hou, B. Abrams, P. Vesborg, M. Björketun, K. Herbst, L. Bech, Alessandro Setti, C. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. Nørskov, I. Chorkendorff (2011)
Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution.Nature materials, 10 6
N. Lewis, D. Nocera (2006)
Powering the planet: Chemical challenges in solar energy utilizationProceedings of the National Academy of Sciences, 103
M. Daage, R. Chianelli (1994)
Structure-Function Relations in Molybdenum Sulfide Catalysts: The "Rim-Edge" ModelJournal of Catalysis, 149
A. Albu-Yaron, C. Lévy‐Clément, J. Hutchison (1999)
A Study on MoS2 Thin Films Electrochemically Deposited in Ethylene Glycol at 165 ° CElectrochemical and Solid State Letters, 2
A. Appel, D. Dubois, M. Dubois (2005)
Molybdenum-sulfur dimers as electrocatalysts for the production of hydrogen at low overpotentials.Journal of the American Chemical Society, 127 36
A. Sobczyński (1991)
Molybdenum disulfide as a hydrogen evolution catalyst for water photodecomposition on semiconductorsJournal of Catalysis, 131
(2008)
Amorphous molybdenum sulfide films developed in our group
S. Boettcher, Joshua Spurgeon, M. Putnam, E. Warren, D. Turner-Evans, M. Kelzenberg, J. Maiolo, H. Atwater, N. Lewis (2010)
Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array PhotocathodesScience, 327
Katsuya Shimura, H. Yoshida (2011)
Heterogeneous photocatalytic hydrogen production from water and biomass derivativesEnergy and Environmental Science, 4
Timothy Cook, Dilek Dogutan, Steven Reece, Y. Surendranath, Thomas Teets, D. Nocera (2010)
Solar energy supply and storage for the legacy and nonlegacy worlds.Chemical reviews, 110 11
Yanguang Li, Hailiang Wang, Liming Xie, Yongye Liang, Guosong Hong, H. Dai (2011)
MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction.Journal of the American Chemical Society, 133 19
Xu Zong, Y. Na, Fuyu Wen, Guijun Ma, Jinhui Yang, Donge Wang, Yi Ma, Mei Wang, Licheng Sun, Can Li (2009)
Visible light driven H(2) production in molecular systems employing colloidal MoS(2) nanoparticles as catalyst.Chemical communications, 30
L. Byskov, J. Nørskov, B. Clausen, H. Topsøe (1999)
DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization CatalystsJournal of Catalysis, 187
G. Laperrière, B. Marsan, D. Bélanger (1989)
Preparation and characterization of electrodeposited amorphous molybdenum sulfideSynthetic Metals, 29
E. Ponomarev, A. Albu-Yaron, R. Tenne, C. Lévy‐Clément (1997)
Electrochemical Deposition of Quantized Particle MoS2 Thin FilmsJournal of The Electrochemical Society, 144
J. Turner (2004)
Sustainable Hydrogen ProductionScience, 305
R. Prins, D. Beer, G. Somorjai (1989)
Structure and Function of the Catalyst and the Promoter in Co—Mo Hydrodesulfurization CatalystsCatalysis Reviews-science and Engineering, 31
L. Albertini, A. Ângelo, E. Gonzalez (1992)
A nickel molybdenite cathode for the hydrogen evolution reaction in alkaline mediaJournal of Applied Electrochemistry, 22
Recent work shows that nanoparticulate and amorphous molybdenum and tungsten sulfide materials are active catalysts for hydrogen evolution in aqueous solution. These materials hold promise for applications in clean hydrogen production technologies. In this perspective, the syntheses, structures and catalytic activities of nanoparticulate MoS2 and WS2, incomplete cubane-type [Mo3S4]4+ and amorphous MoSx films are summarized, compared, and discussed.
Energy & Environmental Science – Royal Society of Chemistry
Published: Sep 27, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.