Access the full text.
Sign up today, get DeepDyve free for 14 days.
B. Vígh, M. Silva, C. Frank, C. Vincze, S. Czirok, A. Szabo, Á. Lukáts, Á. Szél (2004)
The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain.Histology and histopathology, 19 2
E. Horstmann (1954)
[The fiber glia of selacean brain].Zeitschrift fur Zellforschung und mikroskopische Anatomie, 39 6
S. Goetz, K. Anderson (2010)
The primary cilium: a signalling centre during vertebrate developmentNature Reviews Genetics, 11
G. Das (1977)
Binucleated neurons in the central nervous system of the laboratory animalsExperientia, 33
C Alfaro‐Cervello, M Soriano‐Navarro, U Gomez‐Pinedo, J García‐Verdugo (2010)
Microscopy: science, technology, applications and education, 2
Fiona Doetsch, L. Petreanu, I. Caillé, J. García-Verdugo, A. Álvarez-Buylla (2002)
EGF Converts Transit-Amplifying Neurogenic Precursors in the Adult Brain into Multipotent Stem CellsNeuron, 36
A. Khodjakov, R. Cole, B. Oakley, C. Rieder (2000)
Centrosome-independent mitotic spindle formation in vertebratesCurrent Biology, 10
L. Magrassi, Piercesare Grimaldi, A. Ibatici, M. Corselli, L. Ciardelli, S. Castello, M. Podestà, F. Frassoni, F. Rossi (2007)
Induction and Survival of Binucleated Purkinje Neurons by Selective Damage and AgingThe Journal of Neuroscience, 27
A. Kerever, J. Schnack, Dirk Vellinga, Naoki Ichikawa, Chris Moon, E. Arikawa-Hirasawa, Jimmy Efird, F. Mercier (2007)
Novel Extracellular Matrix Structures in the Neural Stem Cell Niche Capture the Neurogenic Factor Fibroblast Growth Factor 2 from the Extracellular MilieuSTEM CELLS, 25
B. Menn, J. García-Verdugo, Cynthia Yaschine, Ó. González-Pérez, D. Rowitch, A. Álvarez-Buylla (2006)
Origin of Oligodendrocytes in the Subventricular Zone of the Adult BrainThe Journal of Neuroscience, 26
Fiona Doetsch, I. Caillé, D. Lim, J. García-Verdugo, A. Álvarez-Buylla (1999)
Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian BrainCell, 97
D Russell, L Rubinstein (1977)
Pathology of tumours of the nervous system
M. Bradbury, W. Lathem (1965)
A flow of cerebrospinal fluid along the central canal of the spinal cord of the rabbit and communications between this canal and the sacral subarachnoid space.The Journal of Physiology, 181
J. Gerdes, E. Davis, N. Katsanis (2009)
The Vertebrate Primary Cilium in Development, Homeostasis, and DiseaseCell, 137
U. Lendahl, Lyle Zimmerman, R. McKay (1990)
CNS stem cells express a new class of intermediate filament proteinCell, 60
C. Crespo, F. Gracia-Llanes, J. Blasco-Ibáńez, M. Gutièrrez-Mecinas, Ana-Isabel Marqués-Marıx0301, F. Martıx0301nez-Guijarro (2003)
Nitric oxide synthase containing periglomerular cells are GABAergic in the rat olfactory bulbNeuroscience Letters, 349
Nicolás Marichal, Gabriela García, M. Radmilovich, O. Trujillo-Cenóz, R. Russo (2009)
Enigmatic Central Canal Contacting Cells: Immature Neurons in “Standby Mode”?The Journal of Neuroscience, 29
S. Weiss, C. Dunne., Jennifer Hewson, C. Wohl, M. Wheatley, A. Peterson, B. Reynolds (1996)
Multipotent CNS Stem Cells Are Present in the Adult Mammalian Spinal Cord and Ventricular NeuroaxisThe Journal of Neuroscience, 16
B. Oakley (1992)
Gamma-tubulin: the microtubule organizer?Trends in cell biology, 2 1
J. Namiki, Charles Tator (1999)
Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury.Journal of neuropathology and experimental neurology, 58 5
A. Gritti, E. Parati, L. Cova, P. Frolichsthal, R. Galli, E. Wanke, L. Faravelli, D. Morassutti, F. Roisen, D. Nickel, A. Vescovi (1996)
Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor, 16
S. Wong, Jeremy Reiter (2008)
The primary cilium at the crossroads of mammalian hedgehog signaling.Current topics in developmental biology, 85
H. Poppleton, R. Gilbertson (2006)
Stem cells of ependymomaBritish Journal of Cancer, 96
E Peters, SL Palay, HdF Webster (1991)
The fine structure of the nervous system: neurons and their supporting cells
A. Kramer-Zucker, F. Olale, C. Haycraft, B. Yoder, A. Schier, I. Drummond (2005)
Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis, 132
Mila Komitova, P. Eriksson (2004)
Sox-2 is expressed by neural progenitors and astroglia in the adult rat brainNeuroscience Letters, 369
M. Beattie, J. Bresnahan, J. Komon, C. Tovar, M. Meter, D. Anderson, Alan Faden, Chung Hsu, Linda Noble, S. Salzman, Wise Young (1997)
Endogenous Repair after Spinal Cord Contusion Injuries in the RatExperimental Neurology, 148
E. Dirksen (1971)
CENTRIOLE MORPHOGENESIS IN DEVELOPING CILIATED EPITHELIUM OF THE MOUSE OVIDUCTThe Journal of Cell Biology, 51
N. Kee, S. Sivalingam, R. Boonstra, J. Wojtowicz (2002)
The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesisJournal of Neuroscience Methods, 115
E. Hinchcliffe, F. Miller, Matthew Cham, A. Khodjakov, G. Sluder (2001)
Requirement of a Centrosomal Activity for Cell Cycle Progression Through G1 into S PhaseScience, 291
T. Huang, Y. You, Melanie Spoor, E. Richer, Vrinda. Kudva, R. Paige, Michael Seiler, J. Liebler, J. Zabner, C. Plopper, S. Brody (2003)
Foxj1 is required for apical localization of ezrin in airway epithelial cellsJournal of Cell Science, 116
J. Rafols, H. Goshgarian (1985)
Spinal tanycytes in the adult rat : A correlative Golgi gold‐toning studyThe Anatomical Record, 211
S. Sorokin (1968)
Reconstructions of centriole formation and ciliogenesis in mammalian lungs.Journal of cell science, 3 2
J. Bruni (1998)
Ependymal development, proliferation, and functions: A reviewMicroscopy Research and Technique, 41
J. Sabourin, Karin Ackema, D. Ohayon, Pierre-Olivier Guichet, F. Perrin, A. Garcès, C. Ripoll, J. Charité, L. Simonneau, H. Kettenmann, A. Zine, A. Privat, J. Valmier, A. Pattyn, J. Hugnot (2009)
A Mesenchymal‐Like ZEB1+ Niche Harbors Dorsal Radial Glial Fibrillary Acidic Protein‐Positive Stem Cells in the Spinal CordSTEM CELLS, 27
Yong Zhang, Guangming Huang, Laurie Shornick, W. Roswit, James Shipley, Steven Brody, Michael Holtzman, Martin Schaeffer, Alan A, Edith Wolff (2007)
A transgenic FOXJ1-Cre system for gene inactivation in ciliated epithelial cells.American journal of respiratory cell and molecular biology, 36 5
B. Chiasson, V. Tropepe, C. Morshead, D. Kooy (1999)
Adult Mammalian Forebrain Ependymal and Subependymal Cells Demonstrate Proliferative Potential, but only Subependymal Cells Have Neural Stem Cell CharacteristicsThe Journal of Neuroscience, 19
A. Kojima, Charles Tator (2000)
Epidermal Growth Factor and Fibroblast Growth Factor 2 Cause Proliferation of Ependymal Precursor Cells in the Adult Rat Spinal Cord In VivoJNEN: Journal of Neuropathology & Experimental Neurology, 59
A. Álvarez-Buylla, J. García-Verdugo, Adria Mateo, H. Merchant-Larios (1998)
Primary Neural Precursors and Intermitotic Nuclear Migration in the Ventricular Zone of Adult CanariesThe Journal of Neuroscience, 18
Ó. González-Pérez, Ricardo Romero‐Rodriguez, M. Soriano-Navarro, J. García-Verdugo, A. Álvarez-Buylla (2009)
Epidermal Growth Factor Induces the Progeny of Subventricular Zone Type B Cells to Migrate and Differentiate into OligodendrocytesSTEM CELLS, 27
Fiona Doetsch, J. García-Verdugo, A. Álvarez-Buylla (1997)
Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian BrainThe Journal of Neuroscience, 17
C. Lamotte (1987)
Vasoactive intestinal polypeptide cerebrospinal fluid‐contacting neurons of the monkey and cat spinal central canalJournal of Comparative Neurology, 258
R. Bjugn, H. Haugland, P. Flood (1988)
Ultrastructure of the mouse spinal cord ependyma.Journal of anatomy, 160
Young-Goo Han, A. Álvarez-Buylla (2010)
Role of primary cilia in brain development and cancerCurrent Opinion in Neurobiology, 20
P. Horner, A. Power, G. Kempermann, G. Kempermann, H. Kuhn, T. Palmer, J. Winkler, J. Winkler, L. Thal, F. Gage (2000)
Proliferation and Differentiation of Progenitor Cells Throughout the Intact Adult Rat Spinal CordThe Journal of Neuroscience, 20
W. Marshall (2007)
What is the function of centrioles?Journal of Cellular Biochemistry, 100
B. Oakley (1992)
γ-Tubulin: the microtubule organizer?Trends in Cell Biology, 2
Laura Hamilton, M.K.V. Truong, Matthew Bednarczyk, A. Aumont, K. Fernandes (2009)
Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cordNeuroscience, 164
E. Rawlins, L. Ostrowski, S. Randell, B. Hogan (2007)
Lung development and repair: Contribution of the ciliated lineageProceedings of the National Academy of Sciences, 104
N. Spassky, F. Merkle, Nuria Flames, A. Tramontin, J. García-Verdugo, A. Álvarez-Buylla (2005)
Adult Ependymal Cells Are Postmitotic and Are Derived from Radial Glial Cells during EmbryogenesisThe Journal of Neuroscience, 25
Elaine Otani, C. Newkirk, E. Mcdowell (1986)
Development of hamster tracheal epithelium: IV. Cell proliferation and cytodifferentiation in the neonateThe Anatomical Record, 214
S. Nonaka, Yosuke Tanaka, Y. Okada, S. Takeda, A. Harada, Y. Kanai, Mizuho Kido, N. Hirokawa (1998)
Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor ProteinCell, 95
F. Mercier, J. Kitasako, G. Hatton (2002)
Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage networkJournal of Comparative Neurology, 451
Z. Mirzadeh, F. Merkle, M. Soriano-Navarro, J. García-Verdugo, A. Álvarez-Buylla (2008)
Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain.Cell stem cell, 3 3
E. Laywell, P. Rakic, V. Kukekov, E. Holland, D. Steindler (2000)
Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain.Proceedings of the National Academy of Sciences of the United States of America, 97 25
C. Alfaro-Cervelló, M. Soriano-Navarro, U. Gómez-Pinedo, J. García-Verdugo (2011)
Correlation of light and electron microscopy for immunogold staining . GFP immunogold , tool in biological research
Sara Anastas, Dorit Mueller, S. Semple-Rowland, Joshua Breunig, M. Sarkisian (2011)
Failed cytokinesis of neural progenitors in citron kinase-deficient rats leads to multiciliated neurons.Cerebral cortex, 21 2
E. Horstmann (2004)
Die Faserglia des SelachiergehirnsZeitschrift für Zellforschung und Mikroskopische Anatomie, 39
A. Álvarez-Buylla, D. Lim (2004)
For the Long Run Maintaining Germinal Niches in the Adult BrainNeuron, 41
David Martens, R. Seaberg, D. Kooy (2002)
In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cordEuropean Journal of Neuroscience, 16
Jason Brown, S. Couillard-Després, C. Cooper-Kuhn, J. Winkler, L. Aigner, H. Kuhn (2003)
Transient expression of doublecortin during adult neurogenesisJournal of Comparative Neurology, 467
R. Barber, J. Vaughn, E. Roberts (1982)
The cytoarchitecture of gabaergic neurons in rat spinal cordBrain Research, 238
Y. Nakayama, Kenji Kohno (1974)
Number and polarity of the ependymal cilia in the central canal of some vertebratesJournal of Neurocytology, 3
A. Delgado-Escueta (1992)
The Fine Structure of the Nervous System: Neurons and Their Supporting Cells.Alan Peters , Sanford L. Palay , Henry de F. Webster
Andrea Mothe, Charles Tator (2005)
Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult ratNeuroscience, 131
Jie Luo, Brett Shook, S. Daniels, J. Conover (2008)
Subventricular Zone-Mediated Ependyma Repair in the Adult Mammalian BrainThe Journal of Neuroscience, 28
C. Dromard, H. Guillon, V. Rigau, C. Ripoll, J. Sabourin, F. Perrin, F. Scamps, S. Bozza, P. Sabatier, N. Lonjon, H. Duffau, F. Vachiéry-Lahaye, M. Prieto, C. Ba, L. Deleyrolle, A. Boularan, K. Langley, M. Gaviria, A. Privat, J. Hugnot, L. Bauchet (2008)
Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitroJournal of Neuroscience Research, 86
A. Weigmann, D. Corbeil, A. Hellwig, W. Huttner (1997)
Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells.Proceedings of the National Academy of Sciences of the United States of America, 94 23
M. Brandt, S. Jessberger, B. Steiner, G. Kronenberg, K. Reuter, A. Bick-Sander, W. Behrens, G. Kempermann (2003)
Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of miceMolecular and Cellular Neuroscience, 24
Z. Mirzadeh, Young-Goo Han, M. Soriano-Navarro, J. García-Verdugo, A. Álvarez-Buylla (2010)
Cilia Organize Ependymal Planar PolarityThe Journal of Neuroscience, 30
R. Basto, J. Lau, Tatiana Vinogradova, Tatiana Vinogradova, A. Gardiol, C. Woods, A. Khodjakov, A. Khodjakov, J. Raff (2006)
Flies without CentriolesCell, 125
E. Debus, K. Weber, M. Osborn (1984)
Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides.Differentiation; research in biological diversity, 25 2
S. Shibuya, O. Miyamoto, R. Auer, T. Itano, S. Mori, H. Norimatsu (2002)
Embryonic intermediate filament, nestin, expression following traumatic spinal cord injury in adult ratsNeuroscience, 114
S. Hockfield, R. McKay (1985)
Identification of major cell classes in the developing mammalian nervous system, 5
Q. Shen, Yue Wang, Erzsebet Kokovay, G. Lin, Shu‐Mien Chuang, S. Goderie, B. Roysam, S. Temple (2008)
Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions.Cell stem cell, 3 3
N. Sanai, A. Tramontin, A. Quiñones‐Hinojosa, N. Barbaro, N. Gupta, S. Kunwar, M. Lawton, M. McDermott, A. Parsa, J. Verdugo, M. Berger, A. Álvarez-Buylla (2004)
Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migrationNature, 427
M. Álvarez-Dolado, R. Pardal, J. García-Verdugo, J. Fike, Hyun Lee, K. Pfeffer, C. Lois, S. Morrison, A. Álvarez-Buylla (2003)
Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytesNature, 425
K. Meletis, F. Barnabé-Heider, M. Carlén, E. Evergren, N. Tomilin, O. Shupliakov, J. Frisén (2008)
Spinal Cord Injury Reveals Multilineage Differentiation of Ependymal CellsPLoS Biology, 6
R. Seitz, J. Löhler, G. Schwendemann (1981)
Ependyma and meninges of the spinal cord of the mouseCell and Tissue Research, 220
A. Khodjakov, C. Rieder (2001)
Centrosomes Enhance the Fidelity of Cytokinesis in Vertebrates and Are Required for Cell Cycle ProgressionThe Journal of Cell Biology, 153
E Horstmann (1954)
Die Faserglia des Selachiergehirns. Z Zellforsch, 39
P. Satir, S. Christensen (2007)
Overview of structure and function of mammalian cilia.Annual review of physiology, 69
A. Capela, S. Temple (2002)
LeX/ssea-1 Is Expressed by Adult Mouse CNS Stem Cells, Identifying Them as NonependymalNeuron, 35
R Seitz, J Lohler, G Schwendemann (1981)
Ependyma and meninges of the spinal cord of the mouse. A light‐and electron‐microscopic study, 220
C. Lois, A. Álvarez-Buylla (1993)
Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia.Proceedings of the National Academy of Sciences of the United States of America, 90
M. Komatsu, H. Fujita (1978)
Electron-microscopic studies on the development and aging of the oviduct epithelium of miceAnatomy and Embryology, 152
B. Jacquet, Raul Salinas-Mondragon, Huixuan Liang, B. Therit, Justin Buie, M. Dykstra, K. Campbell, L. Ostrowski, S. Brody, H. Ghashghaei (2009)
FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brainDevelopment, 136
Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [3H]thymidine‐labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin‐ and glial fibrillary acidic protein (GFAP)−. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord. J. Comp. Neurol. 520:3528–3552, 2012. © 2012 Wiley Periodicals, Inc.
The Journal of Comparative Neurology – Wiley
Published: Mar 15, 2013
Keywords: ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.