Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Roy, T. Nakano, H. Keyoung, M. Windrem, M. Windrem, W. Rashbaum, M. Alonso, Jian Kang, W. Peng, M. Carpenter, J. Lin, Steven Goldman, Steven Goldman (2004)
Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cordNature Biotechnology, 22
L. Bonfanti, S. Olive, D. Poulain, D. Theodosis (1992)
Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: An immunohistochemical studyNeuroscience, 49
Sean Quinn, Winston Walters, A. Vescovi, S. Whittemore (1999)
Lineage restriction of neuroepithelial precursor cells from fetal human spinal cordJournal of Neuroscience Research, 57
C. Svendsen, M. Borg, R. Armstrong, A. Rosser, S. Chandran, T. Ostenfeld, M. Caldwell (1998)
A new method for the rapid and long term growth of human neural precursor cellsJournal of Neuroscience Methods, 85
V. Kukekov, E. Laywell, O. Suslov, K. Davies, B. Scheffler, B. Scheffler, L. Thomas, T. O’Brien, M. Kusakabe, D. Steindler (1999)
Multipotent Stem/Progenitor Cells with Similar Properties Arise from Two Neurogenic Regions of Adult Human BrainExperimental Neurology, 156
Hyoung-Tai Kim, Il-Sun Kim, Il-Shin Lee, Jean-Pyo Lee, E. Snyder, K. Park (2006)
Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committedExperimental Neurology, 199
A. Ferri, Maurizio Cavallaro, D. Braida, A. Cristofano, A. Canta, A. Vezzani, S. Ottolenghi, P. Pandolfi, M. Sala, S. Debiasi, S. Nicolis (2004)
Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain, 131
P. Taupin, J. Ray, W. Fischer, S. Suhr, K. Håkansson, A. Grubb, F. Gage (2000)
FGF-2-Responsive Neural Stem Cell Proliferation Requires CCg, a Novel Autocrine/Paracrine CofactorNeuron, 28
GN Fuller, PC Burger (1997)
Histology for pathologists
T. Ben-Hur, B. Rogister, K. Murray, G. Rougon, M. Dubois‐Dalcq (1998)
Growth and Fate of PSA-NCAM+ Precursors of the Postnatal BrainThe Journal of Neuroscience, 18
Jing-Hua Piao, J. Odeberg, E. Samuelsson, A. Kjældgaard, S. Falci, A. Seiger, E. Sundström, E. Åkesson (2006)
Cellular composition of long‐term human spinal cord‐ and forebrain‐derived neurosphere culturesJournal of Neuroscience Research, 84
A. McMahon (2000)
Neural patterning: the role of Nkx genes in the ventral spinal cord.Genes & development, 14 18
David Martens, R. Seaberg, D. Kooy (2002)
In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cordEuropean Journal of Neuroscience, 16
S. Weiss, C. Dunne., Jennifer Hewson, C. Wohl, M. Wheatley, A. Peterson, B. Reynolds (1996)
Multipotent CNS Stem Cells Are Present in the Adult Mammalian Spinal Cord and Ventricular NeuroaxisThe Journal of Neuroscience, 16
S. Chandran, A. Compston, E. Jauniaux, J. Gilson, W. Blakemore, C. Svendsen (2004)
Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursorsGlia, 47
A. Aguirre, R. Chittajallu, S. Belachew, V. Gallo (2004)
NG2-expressing cells in the subventricular zone are type C–like cells and contribute to interneuron generation in the postnatal hippocampusThe Journal of Cell Biology, 165
L. Shihabuddin, J. Ray, F. Gage (1997)
FGF-2 Is Sufficient to Isolate Progenitors Found in the Adult Mammalian Spinal CordExperimental Neurology, 148
Y. Arsenijevic, J. Villemure, J. Brunet, J. Bloch, N. Déglon, C. Kostic, A. Zurn, P. Aebischer (2001)
Isolation of Multipotent Neural Precursors Residing in the Cortex of the Adult Human BrainExperimental Neurology, 170
P. Eriksson, E. Perfilieva, T. Björk-Eriksson, Ann-Marie Alborn, C. Nordborg, D. Peterson, F. Gage (1998)
Neurogenesis in the adult human hippocampusNature Medicine, 4
L. Deleyrolle, S. Marchal-Victorion, C. Dromard, V. Fritz, M. Saunier, J. Sabourin, C. Ba, A. Privat, J. Hugnot (2006)
Exogenous and Fibroblast Growth Factor 2/Epidermal Growth Factor–Regulated Endogenous Cytokines Regulate Neural Precursor Cell Growth and DifferentiationSTEM CELLS, 24
T. Seki, Y. Arai (1993)
Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous systemNeuroscience Research, 17
A. Quiñones‐Hinojosa, N. Sanai, M. Soriano-Navarro, Ó. González-Pérez, Z. Mirzadeh, S. Gil-Perotín, R. Romero-Rodriguez, M. Berger, J. García-Verdugo, A. Álvarez-Buylla (2006)
Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cellsJournal of Comparative Neurology, 494
C. Johansson, S. Momma, D. Clarke, M. Risling, U. Lendahl, J. Frisén (1999)
Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous SystemCell, 96
CB Johansson, M Svensson, L Wallstedt, AM Janson, J Frisen (1999b)
Neural stem cells in the adult human brain, 253
M. Wegner, C. Stolt (2005)
From stem cells to neurons and glia: a Soxist's view of neural developmentTrends in Neurosciences, 28
L. Wright, Jiang Li, M. Caldwell, K. Wallace, Jeffrey Johnson, C. Svendsen (2003)
Gene expression in human neural stem cells: effects of leukemia inhibitory factorJournal of Neurochemistry, 86
J. Bruni, K. Reddy (1987)
Ependyma of the central canal of the rat spinal cord: a light and transmission electron microscopic study.Journal of anatomy, 152
S. Walder, P. Ferretti (2004)
Distinct neural precursors in the developing human spinal cord.The International journal of developmental biology, 48 7
Ronghao Li, S. Thode, Jiuying Zhou, Normand Richard, Jose Pardinas, Mahendra Rao, D. Sah (2000)
Motoneuron differentiation of immortalized human spinal cord cell linesJournal of Neuroscience Research, 59
D. Čížková, O. Kakinohana, Karolina Kucharova, S. Marsala, K. Johe, T. Hazel, M. Hefferan, M. Marsala (2007)
Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cellsNeuroscience, 147
N. Sanai, A. Tramontin, A. Quiñones‐Hinojosa, N. Barbaro, N. Gupta, S. Kunwar, M. Lawton, M. McDermott, A. Parsa, J. Verdugo, M. Berger, A. Álvarez-Buylla (2004)
Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migrationNature, 427
F. Golla (1960)
The Central Nervous SystemNature, 188
Marta Nunes, N. Roy, H. Keyoung, Robert Goodman, G. McKhann, Li Jiang, Jian Kang, M. Nedergaard, Steven Goldman (2003)
Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brainNature Medicine, 9
A. Privat, C. Leblond (1972)
The subependymal layer and neighboring region in the brain of the young ratJournal of Comparative Neurology, 146
Fiona Doetsch, J. García-Verdugo, A. Álvarez-Buylla (1997)
Cellular Composition and Three-Dimensional Organization of the Subventricular Germinal Zone in the Adult Mammalian BrainThe Journal of Neuroscience, 17
A. Buffo, M. Vosko, Dilek Ertürk, G. Hamann, M. Jucker, D. Rowitch, M. Götz (2005)
Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair.Proceedings of the National Academy of Sciences of the United States of America, 102 50
Fiona Doetsch (2003)
The glial identity of neural stem cellsNature Neuroscience, 6
M. Jain, R. Armstrong, P. Tyers, R. Barker, A. Rosser (2003)
GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitroExperimental Neurology, 182
M. Weible, T. Chan-Ling (2007)
Phenotypic characterization of neural stem cells from human fetal spinal cord: Synergistic effect of LIF and BMP4 to generate astrocytesGlia, 55
Shin-ichi Yamamoto, M. Nagao, M. Sugimori, H. Kosako, H. Nakatomi, Naoya Yamamoto, H. Takebayashi, Y. Nabeshima, T. Kitamura, G. Weinmaster, Kozo Nakamura, M. Nakafuku (2001)
Transcription Factor Expression and Notch-Dependent Regulation of Neural Progenitors in the Adult Rat Spinal CordThe Journal of Neuroscience, 21
Kota Watanabe, M. Nakamura, A. Iwanami, Yuko Fujita, Y. Kanemura, Y. Toyama, H. Okano (2004)
Comparison between Fetal Spinal-Cord- and Forebrain-Derived Neural Stem/Progenitor Cells as a Source of Transplantation for Spinal Cord InjuryDevelopmental Neuroscience, 26
A. Capela, S. Temple (2002)
LeX/ssea-1 Is Expressed by Adult Mouse CNS Stem Cells, Identifying Them as NonependymalNeuron, 35
P. Horner, A. Power, G. Kempermann, G. Kempermann, H. Kuhn, T. Palmer, J. Winkler, J. Winkler, L. Thal, F. Gage (2000)
Proliferation and Differentiation of Progenitor Cells Throughout the Intact Adult Rat Spinal CordThe Journal of Neuroscience, 20
H. Fu, Y. Qi, Min Tan, Jun Cai, Xuemei Hu, Zijing Liu, J. Jensen, M. Qiu (2003)
Molecular mapping of the origin of postnatal spinal cord ependymal cells: Evidence that adult ependymal cells are derived from Nkx6.1+ ventral neural progenitor cellsJournal of Comparative Neurology, 456
K. Barami, Jiun Zhao, F. Diaz, W. Lyman (2001)
Comparison of neural precursor cell fate in second trimester human brain and spinal cordNeurological Research, 23
Adult human and rodent brains contain neural stem and progenitor cells, and the presence of neural stem cells in the adult rodent spinal cord has also been described. Here, using electron microscopy, expression of neural precursor cell markers, and cell culture, we investigated whether neural precursor cells are also present in adult human spinal cord. In well‐preserved nonpathological post‐mortem human adult spinal cord, nestin, Sox2, GFAP, CD15, Nkx6.1, and PSA‐NCAM were found to be expressed heterogeneously by cells located around the central canal. Ultrastructural analysis revealed the existence of immature cells close to the ependymal cells, which display characteristics of type B and C cells found in the adult rodent brain subventricular region, which are considered to be stem and progenitor cells, respectively. Completely dissociated spinal cord cells reproducibly formed Sox2+ nestin+ neurospheres containing proliferative precursor cells. On differentiation, these generate glial cells and γ‐aminobutyric acid (GABA)‐ergic neurons. These results provide the first evidence for the existence in the adult human spinal cord of neural precursors with the potential to differentiate into neurons and glia. They represent a major interest for endogenous regeneration of spinal cord after trauma and in degenerative diseases. © 2008 Wiley‐Liss, Inc.
Journal of Neuroscience Research – Wiley
Published: Jan 1, 2008
Keywords: ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.