Access the full text.
Sign up today, get DeepDyve free for 14 days.
Xin-tian Li, N. Costantino, Lin-yu Lu, De-pei Liu, R. Watt, Kathryn Cheah, Donald Court, Jian-Dong Huang (2003)
Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli.Nucleic acids research, 31 22
P. Hasty, J. Campisi, J. Hoeijmakers, H. Steeg, J. Vijg (2003)
Aging and Genome Maintenance: Lessons from the Mouse?Science, 299
A. Mukherjee, C. Costello (1998)
Aneuploidy analysis in fibroblasts of human premature aging syndromes by FISH during in vitro cellular agingMechanisms of Ageing and Development, 103
A. Sandre-Giovannoli, R. Bernard, P. Cau, C. Navarro, J. Amiel, I. Boccaccio, S. Lyonnet, C. Stewart, A. Munnich, M. Merrer, N. Lévy (2003)
Lamin A Truncation in Hutchinson-Gilford ProgeriaScience, 300
C. Navarro, J. Cadiñanos, A. Sandre-Giovannoli, R. Bernard, S. Courrier, I. Boccaccio, A. Boyer, W. Kleijer, A. Wagner, F. Giuliano, F. Beemer, J. Freije, P. Cau, R. Hennekam, C. López-Otín, C. Badens, N. Lévy (2005)
Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors.Human molecular genetics, 14 11
Travis Taylor, D. Knipe (2004)
Proteomics of Herpes Simplex Virus Replication Compartments: Association of Cellular DNA Replication, Repair, Recombination, and Chromatin Remodeling Proteinswith ICP8Journal of Virology, 78
O. Sedelnikova, I. Horikawa, D. Zimonjic, N. Popescu, W. Bonner, J. Barrett (2004)
Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaksNature Cell Biology, 6
A. Agarwal, J. Fryns, R. Auchus, A. Garg (2003)
Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia.Human molecular genetics, 12 16
M. Bergo, Bryant Gavino, J. Ross, W. Schmidt, C. Hong, L. Kendall, A. Mohr, M. Meta, H. Genant, Yebin Jiang, E. Wisner, N. Bruggen, R. Carano, S. Michaelis, S. Griffey, S. Young (2002)
Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defectProceedings of the National Academy of Sciences of the United States of America, 99
J. Molenaar (2004)
DNA damage and agingMechanisms of Ageing and Development, 125
Irene Ward, B. Reina-San-Martin, A. Olaru, Kay Minn, K. Tamada, J. Lau, M. Cascalho, Lieping Chen, A. Nussenzweig, F. Livak, M. Nussenzweig, Junjie Chen (2004)
53BP1 is required for class switch recombinationThe Journal of Cell Biology, 165
H. Rajagopalan, P. Jallepalli, C. Rago, V. Velculescu, K. Kinzler, B. Vogelstein, C. Lengauer (2004)
Inactivation of hCDC4 can cause chromosomal instabilityNature, 428
P. Luzi, A. Bruni, P. Mangiavacchi, G. Cevenini, D. Marini, P. Tosi (1994)
Ploidy pattern and cell cycle in breast cancer as detected by image analysis and flow cytometry.Cytometry, 18 2
A. Pendás, Zhongjun Zhou, J. Cadiñanos, J. Freije, Jianming Wang, K. Hultenby, A. Astudillo, A. Wernerson, Francisco Rodríguez, K. Tryggvason, C. López-Otín (2002)
Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase–deficient miceNature Genetics, 31
A. Seluanov, D. Mittelman, O. Pereira-smith, John Wilson, V. Gorbunova (2004)
DNA end joining becomes less efficient and more error-prone during cellular senescence.Proceedings of the National Academy of Sciences of the United States of America, 101 20
R. Goldman, D. Shumaker, M. Erdos, M. Eriksson, A. Goldman, L. Gordon, Y. Gruenbaum, S. Khuon, Melissa Mendez, R. Varga, F. Collins (2004)
Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndromeProceedings of the National Academy of Sciences of the United States of America, 101
F. Fagagna, P. Reaper, Lorena Clay-Farrace, H. Fiegler, P. Carr, T. Zglinicki, G. Saretzki, N. Carter, S. Jackson (2003)
A DNA damage checkpoint response in telomere-initiated senescenceNature, 426
S. Burma, A. Kurimasa, G. Xie, Y. Taya, R. Araki, M. Abe, H. Crissman, H. Ouyang, Gloria Li, David Chen (1999)
DNA-dependent Protein Kinase-independent Activation of p53 in Response to DNA Damage*The Journal of Biological Chemistry, 274
R. Busuttil, M. Dollé, J. Campisi, Jan Vijga (2004)
Genomic Instability, Aging, and Cellular SenescenceAnnals of the New York Academy of Sciences, 1019
M. Eriksson, W. Brown, L. Gordon, L. Gordon, M. Glynn, J. Singer, L. Scott, M. Erdos, C. Robbins, T. Moses, Peter Berglund, A. Dutra, E. Pak, Sandra Durkin, A. Csoka, M. Boehnke, T. Glover, F. Collins (2003)
Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndromeNature, 423
Zhenkun Lou, C. Chini, Katherine Minter-Dykhouse, Junjie Chen (2003)
Mediator of DNA Damage Checkpoint Protein 1 Regulates BRCA1 Localization and Phosphorylation in DNA Damage Checkpoint Control*The Journal of Biological Chemistry, 278
C. Hutchison (2002)
Lamins: building blocks or regulators of gene expression?Nature Reviews Molecular Cell Biology, 3
L. Mounkes, S. Kozlov, Lidia Hernandez, Teresa Sullivan, C. Stewart (2003)
A progeroid syndrome in mice is caused by defects in A-type laminsNature, 423
D. Chan, B. Chen, S. Prithivirajsingh, A. Kurimasa, M. Story, J. Qin, David Chen (2002)
Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks.Genes & development, 16 18
A. Goldman, R. Moir, M. Montag-Lowy, M. Stewart, R. Goldman (1992)
Pathway of incorporation of microinjected lamin A into the nuclear envelopeThe Journal of Cell Biology, 119
Premature aging syndromes often result from mutations in nuclear proteins involved in the maintenance of genomic integrity. Lamin A is a major component of the nuclear lamina and nuclear skeleton. Truncation in lamin A causes Hutchinson-Gilford progerial syndrome (HGPS), a severe form of early-onset premature aging. Lack of functional Zmpste24, a metalloproteinase responsible for the maturation of prelamin A, also results in progeroid phenotypes in mice and humans. We found that Zmpste24-deficient mouse embryonic fibroblasts (MEFs) show increased DNA damage and chromosome aberrations and are more sensitive to DNA-damaging agents. Bone marrow cells isolated from Zmpste24 −/− mice show increased aneuploidy and the mice are more sensitive to DNA-damaging agents. Recruitment of p53 binding protein 1 (53BP1) and Rad51 to sites of DNA lesion is impaired in Zmpste24 −/− MEFs and in HGPS fibroblasts, resulting in delayed checkpoint response and defective DNA repair. Wild-type MEFs ectopically expressing unprocessible prelamin A show similar defects in checkpoint response and DNA repair. Our results indicate that unprocessed prelamin A and truncated lamin A act dominant negatively to perturb DNA damage response and repair, resulting in genomic instability which might contribute to laminopathy-based premature aging.
Nature Medicine – Springer Journals
Published: Jun 26, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.