Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Nomura, Jing-yu Liu (2011)
Half-titanocenes for precise olefin polymerisation: effects of ligand substituents and some mechanistic aspects.Dalton transactions, 40 30
K. Lozano, J. Bonilla-Rios, E. Barrera (2001)
A study on nanofiber-reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction propertiesJournal of Applied Polymer Science, 80
W. Kaminsky, M. Fernández (2008)
New polymers by copolymerization of olefins with bio oil componentsEuropean Journal of Lipid Science and Technology, 110
K. Lozano, E. Barrera (2001)
Nanofiber‐reinforced thermoplastic composites. I. Thermoanalytical and mechanical analysesJournal of Applied Polymer Science, 79
J. Ewen, Robert Jones, A. Razavi, J. Ferrara (1988)
Syndiospecific propylene polymerizations with Group IVB metallocenes.Journal of the American Chemical Society, 110 18
Ferdinand Wild, L. Zsolnai, G. Huttner, H. Brintzinger (2000)
SYNTHESIS AND MOLECULAR STRUCTURES OF CHIRAL ansa-TITANOCENE DERIVATIVES WITH BRIDGED TETRAHYDROINDENYL LIGANDS
P. Hodge (2000)
Metallocene‐based polyolefins — preparation, properties and technology, Vols 1 and 2. J. Scheirs and W. Kaminsky (eds) John Wiley & Sons, Chichester, 2000. Vol. 1, 526 pages, Vol. 2, 571 pages. £275 (two‐volume set) ISBN 0‐471‐98086‐22Applied Organometallic Chemistry, 14
A. Schäfer, Eberhard Karl, L. Zsolnai, G. Huttner, H. Brintzinger (1987)
ansa-metallocene derivatives : XII. Diastereomeric derivatisation and enantiomer separation of ethylenebis(tetrahydronindenyl)-titanium and -zirconium dichloridesJournal of Organometallic Chemistry, 328
J. Seppälä, E. Kokko, P. Lehmus, A. Malmberg, K. Hakala, S. Lipponen, B. Löfgren (2013)
Functional Polyolefins Through Polymerizations by Using Bis(indenyl) Zirconium Catalysts
W. Kaminsky (2012)
Discovery of Methylaluminoxane as Cocatalyst for Olefin PolymerizationMacromolecules, 45
B. Rieger (2003)
Late transition metal polymerization catalysis
P Pino, P Cioni, J Wei (1987)
Asymmetric hydrooligomerizationJ Am Chem Soc, 109
K Kawai, T Fujita (2009)
Metal catalysts in olefin polymerizationTop Organomet Chem, 26
H Sinn (1995)
Ziegler catalysts
W. Kaminsky (2012)
3.26 – Cycloolefin Polymerization, 3
G. Hlatky (2000)
Heterogeneous single-site catalysts for olefin polymerization.Chemical reviews, 100 4
P. Pino, P. Cioni, M. Galimberti, J. Wei, N. Piccolrovazzi (1987)
Asymmetric Hydrooligomerization of PropyleneJournal of the American Chemical Society, 109
W. Kaminsky, K. Külper, H. Brintzinger, Ferdinand Wild (1985)
Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as CocatalystAngewandte Chemie, 24
A. Shamiri, M. Chakrabarti, S. Jahan, M. Hussain, W. Kaminsky, P. Aravind, W. Yehye (2014)
The Influence of Ziegler-Natta and Metallocene Catalysts on Polyolefin Structure, Properties, and Processing AbilityMaterials, 7
FR Wild, L Zsolnai, G Huttner, HH Brintzinger (1982)
Ansa-metallocene derivates.IV. Synthesis and molecular structure of chiral ansa-titanocene derivates with bridged tetrahydroindenyl ligandsJ Organomet Chem, 232
Laura Boggioni, I. Tritto (2014)
Propene-cycloolefin polymerization, 1
W. Kaminsky (2014)
Metallocene Based Polyolefin NanocompositesMaterials, 7
M. Bochmann (2010)
The Chemistry of Catalyst Activation: The Case of Group 4 Polymerization Catalysts†Organometallics, 29
J. Bliemeister, Wiebke Hagendorf, A. Harder, B. Heitmann, I. Schimmel, E. Schmedt, W. Schnuchel, E. Sinn, L. Tikwe, N. Thienen, K. Urlass, H. Winter, O. Zarncke (1995)
The Role of MAO-Activators
W. Kaminsky, M. Fernandes (2015)
Discovery and development of metallocene-based polyolefins with special properties, 2
T. McNally, P. Pötschke (2011)
Polymer-carbon nanotube composites: Preparation, properties and applicationsMaterials Today, 14
W. Kaminsky, Andreas Funck, C. Klinke (2008)
In-situ Polymerization of Olefins on Nanoparticles or Fibers by Metallocene CatalystsTopics in Catalysis, 48
G. Coates (2000)
Precise control of polyolefin stereochemistry using single-site metal catalysts.Chemical reviews, 100 4
I. Natta, Walter Kaminsky (2013)
Polyolefins: 50 years after Ziegler and Natta I: Polyethylene and PolypropylenePolyolefins: 50 years after Ziegler and Natta I
A. Razavi (2013)
Syndiotactic Polypropylene: Discovery, Development, and Industrialization via Bridged Metallocene Catalysts
Marco Frediani, C. Bianchini, W. Kaminsky (2006)
Low density polyethylene by tandem catalysis with single site Ti(IV)/Co(II) catalystsKinetics and Catalysis, 47
M. Delferro, T. Marks (2011)
Multinuclear olefin polymerization catalysts.Chemical reviews, 111 3
(1987)
ansaMetallocene derivates. XII Diastereomeric derivatization
Richard Jones (2010)
Metal Catalysts in Olefin Polymerization. Topics in Organometallic Chemistry, Vol. 26Journal of the American Chemical Society, 132
W. Kaminsky, A. Ahlers, Nico Möller‐Lindenhof (1989)
Asymmetric Oligomerization of Propene and 1-Butene with a Zirconocene/Alumoxane Catalyst†‡Angewandte Chemie, 28
F. Stadler, Burçak Arikan-Conley, J. Kaschta, W. Kaminsky, H. Münstedt (2011)
Synthesis and Characterization of Novel Ethylene-graft-Ethylene/Propylene CopolymersMacromolecules, 44
(2010)
Olefin polymerization by metallocene catalysis
The development of the homogeneous metallocene/methylaluminoxane catalyst for the polymerization of olefin has widely increased the possibilities in controlling the polymer composition, polymer structure, tacticity and special properties with high precision compared to the heterogeneous Ziegler–Natta and Phillips catalysts. Metallocene catalysts allow the synthesis of isotactic, isoblock, syndiotactic, stereoblock or atactic polymers, as well as polyolefin composite materials with superior properties and low content of extractables. The homogeneous character of metallocene-based catalysts leads to a better understanding of the mechanism of the olefin polymerization and allows the synthesis of optically active olefin oligomers using chiral transition metal complexes. These single-site catalysts are able to copolymerize ethene and propene with short- and long-chained α-olefins, cyclic olefins, or polar vinyl monomers such as ethers, alcohols or esters. Such copolymers are suitable for blends of polyolefins with polyethers and other polar polymers because of an excellent adhesion of the two polymers. In the future, polyolefin nanocomposites and tailored copolymers open up the approach to new classes of materials with great property combinations such as improved stiffness, high gas barrier properties, significant flame retardancy, and high crystallization rates.
Rendiconti Lincei – Springer Journals
Published: Dec 15, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.