Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

FEGNet: A feature enhancement and guided network for infrared object detection in underground mines

FEGNet: A feature enhancement and guided network for infrared object detection in underground mines Object detection plays an important role in underground intelligent vehicles and intelligent transportation systems. Due to the uneven light in underground mining scenarios, infrared cameras are one of the typical onboard sensors for environmental perception. Although object detection has been studied for decades, it still confronts the challenge of detecting infrared objects in underground mines. The contributing factors include weak and small objects in infrared images and similar environments in mining scenarios. In this paper, a Feature Enhancement and Guided Network (FEGNet) is proposed to address these problems. Based on the characteristics of infrared images, the feature enhancement module (FEM) preserves the image details from global and local perspectives to improve the discrimination of weak and small objects. To tackle the problem of overfitting caused by similar environments, a receptive-field-guided (RFG) backbone is proposed to learn multi-scale context and spatial information. The experimental results on the underground mining (UM) dataset demonstrate that the mAP of the proposed FEGNet achieves 86.1%, which is 4.6% higher than the state-of-the-art CNN-based network YOLOv7. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering SAGE

FEGNet: A feature enhancement and guided network for infrared object detection in underground mines

Loading next page...
 
/lp/sage/fegnet-a-feature-enhancement-and-guided-network-for-infrared-object-f3MsflMwny

References (31)

Publisher
SAGE
Copyright
© IMechE 2023
ISSN
0954-4070
eISSN
2041-2991
DOI
10.1177/09544070231165627
Publisher site
See Article on Publisher Site

Abstract

Object detection plays an important role in underground intelligent vehicles and intelligent transportation systems. Due to the uneven light in underground mining scenarios, infrared cameras are one of the typical onboard sensors for environmental perception. Although object detection has been studied for decades, it still confronts the challenge of detecting infrared objects in underground mines. The contributing factors include weak and small objects in infrared images and similar environments in mining scenarios. In this paper, a Feature Enhancement and Guided Network (FEGNet) is proposed to address these problems. Based on the characteristics of infrared images, the feature enhancement module (FEM) preserves the image details from global and local perspectives to improve the discrimination of weak and small objects. To tackle the problem of overfitting caused by similar environments, a receptive-field-guided (RFG) backbone is proposed to learn multi-scale context and spatial information. The experimental results on the underground mining (UM) dataset demonstrate that the mAP of the proposed FEGNet achieves 86.1%, which is 4.6% higher than the state-of-the-art CNN-based network YOLOv7.

Journal

Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile EngineeringSAGE

Published: Jul 1, 2024

Keywords: Infrared object detection; underground mines; intelligent vehicles

There are no references for this article.