Access the full text.
Sign up today, get DeepDyve free for 14 days.
Y Chu (2022)
Haze level evaluation using dark and bright channel prior informationAtmosphere, 13
Teng Yu, Kang Song, P. Miao, Guowei Yang, Huan Yang, Chenglizhao Chen (2019)
Nighttime Single Image Dehazing via Pixel-Wise Alpha BlendingIEEE Access, 7
Yong Xu, Jie Wen, Lunke Fei, Zheng Zhang (2016)
Review of Video and Image Defogging Algorithms and Related Studies on Image Restoration and EnhancementIEEE Access, 4
Zhou Wang, Eero Simoncelli, A. Bovik (2003)
Multiscale structural similarity for image quality assessmentThe Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, 2
Thaweesak Trongtirakul, S. Agaian (2022)
Transmission map optimization for single image dehazing, 12100
Shuying Huang, Donglei Wu, Yong Yang, Haijun Zhu (2018)
Image Dehazing Based on Robust Sparse RepresentationIEEE Access, 6
J. Kopf, B. Neubert, Billy Chen, Michael Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, Dani Lischinski (2008)
Deep photo: model-based photograph enhancement and viewingACM Trans. Graph., 27
S. Nayar, S. Narasimhan (1999)
Vision in bad weatherProceedings of the Seventh IEEE International Conference on Computer Vision, 2
Kaiming He, Jian Sun, Xiaoou Tang (2010)
Guided Image FilteringIEEE Transactions on Pattern Analysis and Machine Intelligence, 35
Junjie Nie, Haotian Wu, Shuyang Yao (2023)
Image Defogging Based on Joint Contrast Enhancement and Multi-scale Fusion2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA)
Chuang Li, Changjiu Yuan, Hongbo Pan, Yue Yang, Ziyan Wang, Hao Zhou, Hailing Xiong (2023)
Single-Image Dehazing Based on Improved Bright Channel Prior and Dark Channel PriorElectronics
Yan Yang, Zhiwei Wang (2020)
Haze Removal: Push DCP at the EdgeIEEE Signal Processing Letters, 27
Geet Sahu, Ayan Seal (2019)
Image Dehazing Based on Luminance Stretching2019 International Conference on Information Technology (ICIT)
Hrach Ayunts, A. Grigoryan, S. Agaian (2024)
Novel Entropy for Enhanced Thermal Imaging and Uncertainty QuantificationEntropy, 26
Yanyang Yan, Wenqi Ren, Yuanfang Guo, Rui Wang, Xiaochun Cao (2017)
Image Deblurring via Extreme Channels Prior2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Geet Sahu, Ayan Seal, J. Jaworek-Korjakowska, O. Krejcar (2023)
Single Image Dehazing via Fusion of Multilevel Attention Network for Vision-Based Measurement ApplicationsIEEE Transactions on Instrumentation and Measurement, 72
Geet Sahu, Ayan Seal, O. Krejcar, A. Yazidi (2021)
Single image dehazing using a new color channelJ. Vis. Commun. Image Represent., 74
Weidong Zhang, Lili Dong, Xipeng Pan, Jingchun Zhou, L. Qin, Wenhai Xu (2019)
Single Image Defogging Based on Multi-Channel Convolutional MSRCRIEEE Access, 7
K He (2012)
Guided image filteringIEEE Trans Pattern Anal Mach Intell, 35
Qingtao Fu, Cheolkon Jung, Kaiqiang Xu (2018)
Retinex-Based Perceptual Contrast Enhancement in Images Using Luminance AdaptationIEEE Access, 6
Raanan Fattal (2014)
Dehazing Using Color-LinesACM Transactions on Graphics (TOG), 34
Y Ping (2022)
Image dehazing algorithm based on improved binary segmentationJ Jilin Normal Univ (Natural Science Edition), 43
Guxue Gao, Huicheng Lai, Zhenhong Jia, YueQin Liu, Yali Wang (2020)
Sand-Dust Image Restoration Based on Reversing the Blue Channel PriorIEEE Photonics Journal, 12
S. Narasimhan, S. Nayar (2003)
Contrast Restoration of Weather Degraded ImagesIEEE Trans. Pattern Anal. Mach. Intell., 25
Mohinder Malhotra (2016)
Single Image Haze Removal Using Dark Channel Prior
A. Cantor (1978)
Optics of the atmosphere--Scattering by molecules and particlesIEEE Journal of Quantum Electronics, 14
Zhenhua Wan, Kaichun Zhao, J. Chu (2021)
A Novel Attitude Measurement Method Based on Forward Polarimetric Imaging of SkylightIEEE Transactions on Instrumentation and Measurement, 70
Geet Sahu, Ayan Seal, D. Bhattacharjee, M. Nasipuri, P. Brída, O. Krejcar (2022)
Trends and Prospects of Techniques for Haze Removal From Degraded Images: A SurveyIEEE Transactions on Emerging Topics in Computational Intelligence, 6
Younggun Cho, Jinyong Jeong, Ayoung Kim (2018)
Model-Assisted Multiband Fusion for Single Image Enhancement and Applications to Robot VisionIEEE Robotics and Automation Letters, 3
R. Tan (2008)
Visibility in bad weather from a single image2008 IEEE Conference on Computer Vision and Pattern Recognition
Isha Kansal, Singara Kasana (2020)
Improved color attenuation prior based image de-fogging techniqueMultimedia Tools and Applications, 79
R. Szeliski, R. Zabih, D. Scharstein, Olga Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, C. Rother (2006)
A Comparative Study of Energy Minimization Methods for Markov Random Fields
A. Galdran (2018)
Image dehazing by artificial multiple-exposure image fusionSignal Process., 149
Ying Chu, Fan Chen, Hong Fu, Hengyong Yu (2022)
Haze Level Evaluation Using Dark and Bright Channel Prior InformationSSRN Electronic Journal
Geet Sahu, Ayan Seal, D. Bhattacharjee, R. Frischer, O. Krejcar (2023)
A Novel Parameter Adaptive Dual Channel MSPCNN Based Single Image Dehazing for Intelligent Transportation SystemsIEEE Transactions on Intelligent Transportation Systems, 24
Geet Sahu, Ayan Seal, A. Yazidi, O. Krejcar (2024)
A Dual-Channel Dehaze-Net for Single Image Dehazing in Visual Internet of Things Using PYNQ-Z2 BoardIEEE Transactions on Automation Science and Engineering, 21
Dana Berman, T. Treibitz, S. Avidan (2016)
Non-local Image Dehazing2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Zhenghao Shi, Yaning Feng, Minghua Zhao, E. Zhang, Lifeng He (2019)
Let You See in Sand Dust Weather: A Method Based on Halo-Reduced Dark Channel Prior Dehazing for Sand-Dust Image EnhancementIEEE Access, 7
Sonal Yadav, Krishna Raj (2020)
Underwater Image Enhancement via Color Balance and Stationary Wavelet Based Fusion2020 IEEE International Conference for Innovation in Technology (INOCON)
Qingsong Zhu, Jiaming Mai, Ling Shao (2015)
A Fast Single Image Haze Removal Algorithm Using Color Attenuation PriorIEEE Transactions on Image Processing, 24
Chao Zhou, Xinting Yang, Baihai Zhang, Kai Lin, Daming Xu, Qiang Guo, Chuanheng Sun (2017)
An adaptive image enhancement method for a recirculating aquaculture systemScientific Reports, 7
We propose a Rayleigh Scattering and adaptive color compensation method. It capital- izes on the brightness and color differentials between the regions where DCP has failed within images for effective regional segmentation. First, we added B-channel compensa- OPEN ACCESS tion to the atmospheric illumination, made a simple evaluation of the B channel through Citation: GuoX, Sun Q, ZhaoJ, SunM, the atmospheric illumination of the R channel and the G channel. It repeatedly iterated ZhangY, ZhangY.etal.(2025)Single-image dehazing methodbasedonRayleighScattering to obtain and repaired the atmospheric illumination of the B channel, which eliminates andadaptivecolorcompensation.PLoS ONE the color dilution. Secondly, we obtained the dark channel image and the bright channel 20(3):e0315176.https://doi.org/10.1371/ image, and jointly evaluated the failure point of the dark channel prior method to select journal.pone.0315176 the area with inaccurate transmission. This can select the areas which need re-estimate Editor:YongjieLi,University ofElectronic the transmission. This step improves the image quality of the area and repairs the image ScienceandTechnologyofChina,CHINA details. Finally, we validated the effectiveness and resilience of the proposed method Received:March12,2024 through comprehensive experiments. It is conducted across diverse scenarios, involving Accepted:November19,2024 the adjustment of various parameters. Published:March20,2025 Copyright:©2025 Guoetal.Thisisanopen access articledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which Introduction permitsunrestricteduse,distribution,and reproductioninanymedium,providedthe Airpollutionleadstoanincreaseinsuspendedparticlesintheatmosphere,whichresultsin originalauthorandsource arecredited. reducedvisibility.Itcreatesthenaturalatmosphericphenomenaknownasfogandhaze.Light raysundergomultipleinteractionswithairborneparticlesduetofogandhaze,whichleadsto Dataavailabilitystatement:Allrelevantdata arewithinthemanuscriptanditsSupporting adecreaseinlightintensity.Thisimpactsimagingdevicesandresultsinimagesandvideos informationfiles. withreducedbrightness,lowercontrastandcolordistortion.eTh developmentofdefogging techniquesiscrucialtomitigatethesechallengesintheimageprocessing. Funding:ThisstudywasfundedbytheNational NatureScienceFoundationofChina(GrantNo. Inrecentyears,imagedefoggingmethodsaremainlydividedintomulti-imagedefog- 61903152)andtheJilinProvinceScienceand gingmethods[1]andsingle-imagedefoggingmethods.Multi-imagedefoggingmethodsare TechnologyDevelopmentPlan,China limitedtoadefoggingscenariothatrequiresmulti-angleimages,whichgreatlyrestrictsthe (20210203102SF).TheFunderisJinghuaZhao. developmentofthisdirection.Incontrasttomulti-imagedehazingmethods,whichleverage JinghuaZhao’sworkclearly. JinghuaZhaois multipleimagesofthesamescenecapturedfromdifferentanglesandundervaryingweather mainlyresponsibleforthedataanalysisand conditions,single-imagedehazinglacksthisabundanceofdata.Varioustypesofhazyimages collectionofobjectiveparametersforour manuscript. PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 1/ 18 ID: pone.0315176 — 2025/3/20 — page 2 — #2 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation Competinginterests:Theauthorshave exist,eachwithcomplexandunpredictabledepthoffield.Single-imagedehazingmethods declaredthatnocompetinginterests exist. havemadesignificantadvancements,andtheirmainmethodscanbebroadlycategorized intothreetypes:imagedehazingmethodsbasedonimageenhancement[2–4],imagedehaz- ingmethodsbasedonimagefusion[5–7],andimagedehazingmethodsbasedonphysical models[8–11]. eTh lastcategoryofdehazingmethodsisbasedonphysicalmodels.Onenoteworthycon- tributiontothefieldistheDarkChannelPrior(DCP)[ 12]introducedbyHeetal.DCPis groundedintheatmosphericscatteringmodelandstemsfromextensiveobservationsofout- doorimages.eTh theorynotesatendencytowardzerovaluesinthethreecolorchannelsof pixelswithinnon-brightregionsofclearoutdoorimages.AndresearchersextendedtheDCP theory,introducingtheBrightChannelPrior(BCP)[13]theory.eir Th investigationscon- firmedthatfogconcentrationisdirectlylinkedtothedifferenceinbrightnessandsaturation. ThisledtotheamalgamationofBCPandDCP,resultingintheproposalofvariousimproved methods. Efficientimagedefoggingmethodsarestillatopicofresearchinthecomputervision.As described,comparedwithothermethods,theimagedehazingmethodbasedonthephysical modelreliesonapriortheory.Thisdeterminesthataccuratetransmissionandatmospheric illuminationsarekeytoobtainingclearimages.Weproposeasingleimagedefoggingmethod basedonRayleighScatteringandadaptivecolorcompensation(RSA)forrepairingtransmis- sionandatmosphericilluminations.eTh RSAtakesafoggyimageasaninput,andadaptively adjusts.Ontheonehand,theatmosphericilluminationandtransmissionbyusingtheHis- togramCorrelationCoefficient(HCC)objectiveparameterasanadaptiveoperatorimproves thequalityoftherestoredimage.Thisprocessfixestheimagechromaticaberrationproblem andmakesthedehazedimageasclosetotheoriginalimageaspossible.eTh methodreduces theproblemofexcessivecolordeviationandcorrectsthecolordifferenceofimageobjects causedbythedehazingmethod.Itlaysasolidfoundationforthenextsteptoestimatethe accuratetransmission.Ontheotherhand,weuseDCPandBCPtogetthereferenceimageto filteroutareaswherethetransmissionestimationisinaccurateandimprovetheimage’sability toexpressdetails. Ourmaincontributionscanbesummarizedasfollows. • WeproposeanewadaptiveadjustmentframeworkbasedontheDCPtheory,whichadap- tivelyadjuststheatmosphericilluminationsforRayleighcompensation,addressingthe colordeviationissuesindehazedimages. • Weresearchanin-depthstudyoftheDCPtheory,extractareaswheretheDCPfails,and furtheroptimizeimagequality. • Weselectmultiplehazyimages,andhighlighttheeffectivenessofourmethodbasedonsix objectiveparameters,focusingontheadaptationtoatmosphericilluminations. Related work Todepicttheimageformationprocessinfoggyconditions,theatmosphericscatteringmodel servesasafundamentalreference.McCartneyetal.[14]introducedaprototypeatmospheric scatteringmodelin1976,anditislaterrefinedbyNarasimhanandNayar[ 15,16].Mostimage dehazingmethodsbasedonphysicalmodelsareproposedonthebasisoftheatmospheric scatteringmodel.Sincetheequationhastwounknownquantities,itisgreatuncertain. Tanetal.[17]believedthatclearimageshavehigherclarityandcontrastthanhazy images,andthechangesinatmosphericilluminationsaresoerft .eTh yusedwhitebalanceto improvehazyimages,andusedtheMaldivesRandomFields[18]toestimatetheatmospheric PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 2/ 18 ID: pone.0315176 — 2025/3/20 — page 3 — #3 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation illuminations.However,itmaximizesthecontrastoftheimageintheprocessofestimating theatmosphericilluminations,distortingthecolor,andduetotheblockoperation,which causesahalophenomenon. Heetal.[12]madeasignificantcontributionbyintroducingtheconceptofthedarkchan- nelimage(DCI)intheirresearch.eir Th meticulousexaminationofnumerousclearoutdoor imagesunveiledacompellingdiscovery.Inthemajorityofpixelswithintheseimages,oneof thethreeRGBchannelsconsistentlydisplayedremarkablylowpixelvalues,oenft approach- ing0.Yanetal.[13]providedacomprehensivesummaryoftheDCPtheory.eir Th analysis revealedaconsistentmaximumvalueinthethreechannelsofaclearimage,closelyapprox- imating255.Buildinguponthisobservation,theyproposedtheBCPtheory,markingthe beginningofphysically-basedimagedefoggingmethods.Chuetal.[19]introducedDBCP- IIIasanassessmenttoolforimagequalitypost-defogging,whichleveragestheDCPandBCP defoggingeffects.Furtherstridesinhazeremovalemerged,includingaversatilemethod effectivelyremovesfogfrombothdaytimeoutdoorimagesandnighttimefoggyscenes. Lietal.[20]addressedfoggyimagesthroughimagesegmentationtechniques,estimating atmosphericilluminationsandtransmissionforbrightregions,deployingenhancedBCPand DCPmethodologies.esTh eestimatesarefurtherrefinedusingGradientDomainGuidedFil- tering.Whiletheseinnovationsrepresentsignificantprogress,theydoexhibitcertainlimi- tations,particularlyinrestoringbrightnessinspecificimageregions,leadingtopotentially unsatisfactorydefoggingoutcomes.AlthoughDCPhashighprocessingefficiency,thethree pointvaluesmaynottendtozerowhenselectingpixelsinbrightareas.ItresultsinDCPbeing unabletoselectdarkchannelimagesinthisarea,causingthemethodtofail.Inaddition,due tothefailureofDCI,themethodalsohasdeviationswhenitselectsatmosphericillumination, whichaeff ctstheestimationoftransmissioninturn.Mostofthemethodsimprovedbasedon DCPcan’tgetridoftheconstraintsofthistheory,whichresultsinhighsaturationandpoor brightnessoftherepairedimage,halophenomenoninbrightareas,andintroductionofnoise. Zhuetal.[21]conductedathoroughexaminationofnumerousimages.eir Th findings indicatedthatatmosphericilluminationwasenhancedwhenanimagewascoveredbyfog. Thisenhancementmadeitchallengingtodiscerntheoriginalcolorofobjects.eTh yobserved thatasthefogconcentrationintheimageincreased,thisphenomenonbecamemorepro- nounced.Throughdetailedanalysisofareaswithvaryingfogconcentrations,theydiscovered thathigh-concentrationareasexhibitcharacteristicsofhighbrightnessandlowsaturation. eTh conclusiondrawnfromthisobservationisthattheconcentrationoffogisproportional tothedifferencebetweenbrightnessandsaturation.Thistheoryhasundergonewidespread refinementandapplication[ 22,23],whichshowcasesitsadaptabilityandrelevanceacrossvar- iousscenarios.eTh methodsbasedoncolorattenuationpriorobtaintheimagetransmission basedonthedifferencebetweenthebrightnessandsaturationoftheoutdoorimageandthe fogconcentration.Ithasagooddefoggingeffectonhazyimageswithclearbackgrounds,but theimagesprocessedbythismethodarepronetoadditionalnoisepoints,andtheenhance- menteffectaroundthefoggroupispoor.ItisworthnotingthatSahuetal.[ 24]proposeda uniqueattention-basedend-to-enddehazingnetworkforrestoringclearimagesfromtheir counterpartswithoutusingatmosphericscatteringmodels. However,thesemethodsoenft deviatefromrealityinestimatingthetheatmospheric illuminationsandtransmissionprocess.eTh gapbetweenactualvalueandestimatedvalue leadstoproblemssuchascolordeviationandpoorbrightnessintheimages.Forexample, theDCPoenft includeshighpixelvaluesinnon-skyregionsintheestimationoftheatmo- sphericilluminations,whichcausesadeviationbetweentheestimatedandactualvalues. eTh image’stransmissionrateiscalculatedbasedontheatmosphericilluminations.Itleads tocorrespondingdeviationsandthisultimatelyresultsinagloballylowerbrightnessofthe PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 3/ 18 ID: pone.0315176 — 2025/3/20 — page 4 — #4 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation dehazedimage,withhalophenomenainthesky,significantlyreducingtheoverallimage quality.Toaddresstheseissues,improveimagequality,andfixcolordeviation,weadaptthe atmosphericilluminationsbasedonRayleighScattering,performcolorcompensation,and optimizecolordeviationissues.BycombiningDCIandBCI,weidentifytheareaswhereDCP fails,repairthetransmissionrateinthoseregions,enhanceimagequality,andimprovethe unsatisfactoryrestorationintheskyregion. Methods Inthispart,wepresentasingle-imagedehazingmethodbasedonRayleighScatteringand adaptivecolorcompensation(RSA).eTh RSAadaptivelycompensatestheatmosphericillu- minationoftheB-channelwiththeHCCoperatorandderivesthereferenceimageusing theBCPandDCP.eTh methodidentifiestheregionswhereDCPtheoryfailsintheimage throughadaptivesegmentationthresholdadjustmentsoftheHCCoperator.Moreover,it optimizesthetransmissionoftheseregionsusingatoleranceparameterandfinallycomputes theclearimageusingtheatmosphericscattering.Comparedwithothermethods,ourshas madegreatchangesinimagecolorrestoration.Bycontinuouslyiteratingandselectingthe optimalsolutionforatmosphericilluminations,italsoreducestheerrorintransmissionand furtheroptimizestheimagequality.Sincemostofthecurrentphysicalmodel-baseddehazing methodsarebasedontheDCP,andtheycannotgetridofthelimitationofregionalfailurein extremelybrightareas.WecombineDCIwiththebrightchannelimage(BCI),adjustthepix- elswhereDCPfails,andoptimizethetransmissionofthearea.eTh processisshowninthe Fig1. Atmosphericillumination Weemployasmoothingfunctionontheoriginalimagebyapplyingtheguidedfilter[ 25].eTh guidefilterisalinearfilterthatmaintainsthegradientvalueoftheimagewhileensuringthat thesmoothedimageretainsthecharacteristicsofboththeoriginalandsmoothedimages.This approachguaranteesthatthequalityofthesmoothedimage,denotedasS,closelyresembles thatofthefilteredimage.Italsoreducestherelativedifferencesinpixelvaluesbetweenthe imagesandeliminatestheinfluenceofspecklenoiseontheselectionofatmosphericillumi- nations.eTh processisshownin Eq(1). S =GUIDEFILTER(I,q,r,𝛿 ), (1) whereSrepresentsthesmoothedimage,GUIDEFILTER()denotesguidedfiltering, I repre- sentsthehazeimage,qstandsfortheguideimage,r isthewindowsize,and𝛿 istheregular- izationparameter.ToobtaintheatmosphericilluminationAfromthesmoothedimage[26], thefirst0.1%ofpixelpointsareselected.However,it’sessentialtonotethat,accordingto RayleighScatteringtheory,bluelightintheimagingspectrumismoresusceptibletodisper- sioneffectsinfoggyconditions.Deviationsintheatmosphericilluminationcansignificantly impactimagecolor,brightness,andotherqualityattributes. Inanyimage,thereexistsanatmosphericilluminationthreshold,wheretheobjective parameterthatdescribesimagecolor,brightness,andotherqualitiesreachesanextreme value.Whentheestimatedatmosphericilluminationfallsbeloworexceedsthisthreshold, theobjectiveparameterdeviatesfromitsextremevalue.eTh HCC[ 27]isanobjectiveparam- eterusedtogaugeimagesimilarity,withhighervaluesindicatingahigherdegreeofcolor similaritybetweentwoimages. PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 4/ 18 ID: pone.0315176 — 2025/3/20 — page 5 — #5 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation Fig1.Methodflowimage. Thisimagedepictstheactualflowofthemethod. https://doi.org/10.1371/journal.pone.0315176.g001 Toenhancetheaccuracyoftheestimatedatmosphericillumination,theB-colorchannel shouldundergoadaptivecompensation.eTh HCCobjectiveparameterisemployedtoadjust theB-colorchannelcontinuously,alteringitsvaluebasedonHCCasacriterion.Thisprocess aimstoselecttheB-colorchannelvaluethatresultsinthehighestHCCobjectiveparameter. eTh following Eq(2)demonstratesthisprocess. A =A r R A ⎨A =A , (2) g G ⎪A =APT(A ) b B whereArepresentstheadjustedatmosphericillumination,A ,A ,andA representthe R G B atmosphericilluminationsofthethreecolorchannelsofA beforeadjustment,andA ,A ,and i r g A representtheatmosphericilluminationsofthethreecolorchannelsofA aerft optimiza- b i tion.APT()istheadaptivetuningfunctionthatiterativelyreplacestheoldvaluewiththenew oneuntiltheHCCreachesitsextreme. Optimizationoftransmissionusingthereferenceimagesegmentation method erTh ewillalwaysbeachannelwitharelativelyloworhighpixelvalueformostpixelsin thethreechannelsofclearoutdoorimages,approaching0or255respectively,throughthe PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 5/ 18 ID: pone.0315176 — 2025/3/20 — page 6 — #6 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation analysisoftheDCPtheoryandtheBCPtheory.However,somepixelshavehighvaluesinall threechannels,whichcausestheDCPtheorytofail.Itresultsininaccurateestimatesofthe transmissionratethroughthistheory.Toaccuratelyfindtheregionsthatneedoptimization fortransmissionrates,RSAselectstheregionsoptimizedforbrightnessintheDCIandBCI. However,duetotheinclusionofawindowduringtheselectionofchannelimages,theDCI andtheBCIbecomeblocky.eTh windowmakesitchallengingtoaccuratelyselectthepre- ciseregionsneededimproving.AsshowninFig2Cand2Drepresentconventionalchannel images,theBCIandDCIhavebeenblurredbythewindow,whichcausestheimagedetailsto becomeblocky.Itisdifficulttojudgewhethertheimagedetailsneedoptimization. erTh efore,whenselectingtheDCIandBCI,weremovedtheselectionwindowtoallow theselectionofimprovedchannelimages.AsshowninFig2Eand2F,thesearetheimproved channelimages.Byobserving,wecanseethattheimprovedBCIandDCIhaveundergone significantchangesindetail.Thisrevealsthecontoursofobjectsandpreservingdetailswell. Aerft subtractingtheimprovedBCIfromtheDCI,theresultingimageisnamedthereference imageR(x,y),asshowninFig2G. MostpixelvaluesintheBCIarecloseto255,whiletheyarecloseto0intheDCI.How- ever,theDCPdoesnotholdinareasthatneedoptimization,andthepixelvaluesarerelatively large.erTh efore,theareaswithverysmallvaluescorrespondtotheregionsthatneedopti- mizationfortransmissionratesofthehazeimageinthereferenceimageR(x,y).Tocomplete thisstep,asegmentationthreshold𝜑 established.eTh thresholdisadaptivelyadjustedusing HCCobjectiveparametertogetFig2Hand2I. AccordingtoFig2Hand2I,weobtainedthesetofpixelsthatrequiretransmissionopti- mizationduetothefailureoftheDCP.Weoptimizedthemthroughthetolerancevalueand obtainedFig2K.BycomparingFig2Jand2K,wecanfindthatthetransmissioninareassuch astheskyandunderthebridgeiseffectivelyoptimized.Aerft obtainingtheaboveparameters, Fig2.Methodimage.(A)istheimagethatneedtobedefogged.(B)istheguideimageforcalculatingatmosphericilluminations.(C)and(D)areconventional channelimages.(E)and(F)areimprovedchannelimages.(G)istheimageusedtofindfailedareas(H)and(I)selectthepixelstobeoptimizedfrom(J)basedonthe segmentationthreshold.(J),(K)arethetransmissionbeforeandaerft optimizationrespectively.(L)istheclearimagerecovered. https://doi.org/10.1371/journal.pone.0315176.g002 PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 6/ 18 ID: pone.0315176 — 2025/3/20 — page 7 — #7 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation wecancalculatetheclearimageJ(x,y)throughEq(3). ⎧ I(x,y)–A +A,R(m,n) ≥𝜑 ⎪ ⋅max(t(x,y),t ) ⎪ 0 I(x,y) J(x,y) ⎨ , (3) ⎪ I(x,y)–A +A,R(x,y) <𝜑 ⎩max(t(x,y),t ) whereI(x,y)representsthehazyimage,J(x,y)representstheclearimage,K isthetolerance value[28],R(x,y)isthereferenceimage,Adenotestheatmosphericillumination,𝜑 isaseg- mentationthreshold,andt(x,y)standsfortransmission.Aconstantt isintroducedtoprevent thetransmissionfrombeingzero,whichwouldrendertheformulameaningless.Additionally, xandyrepresentthehorizontalandverticalcoordinatesofthepixelpoints,respectively. Experiments and result Inthissection,weaimtodemonstratethevalidityoftheexperimentbyassessingbothsub- jectivevisualeffectsandobjectiveparameters.eTh imagesinourmethodareallfromfreeand opensourcedatabasesprovidedbymethod[29],method[30],method[31],andmethod[32]. eTh datasetcontainshazefreeimages,syntheticdistancemapsandcorrespondingsimu- latedhazeimages[31].eTh goalistoillustratethemethod’seffectivenessandversatility.We selectedanimagethatencompassesatownandnaturallandscapeforthispurpose.Further- more,westartedacomparativeanalysisbyevaluatingobjectiveparametersobtainedfromthe processedimage. Experimentalenvironmentandobjectiveparameters OurexperimentsareproposedonanordinaryPCcomputerwitha64-bitoperatingsys- tem.eTh detailedconfigurationisthattheprocessorisIntel(R)Core(TM)i7-6700CPU@ 3.40GHz3.40GHz,thesystemmemoryis8GB,theenvironmentisMatlab2016.Inorderto furtherillustratetheeffectivenessofRSA,weevaluateobjectivelyfromsixparameters:SSIM (StructuralSIMilarity),UQI(UniversalQualityIndex),PSNR(PeakSignal-To-NoiseRatio), AVE(Average),HCCandMS-SSIMillustrate. SSIMobjectiveparametersevaluatethequalityoftherestoredimagefromthreelevels: brightness,contrastandimagestructureoftheimage.eTh brightness L(x,y),contrastC(x,y) andimagestructureS(x,y)ofexpressionareEqs(4)–(6). 2𝜇 𝜇 +C I J 1 L(x,y) = , (4) 2 2 U +U +C J I 1 2𝜎 𝜎 +C I J 2 C(x,y) = , (5) 2 2 𝜎 +𝜎 +C J I 2 𝜎 +C IJ 3 S(x,y) = , (6) 𝜎 𝜎 +C I J 3 Aerft obtainingtheaboveparameters,theSSIMcanbeshown: C = (0.01T ) 1 t ⎨ , (7) C = (0.03T ) 2 t C =C /2 3 2 SSIM(m,n) =L(m,n)∗C(m,n)∗S(m,n), (8) PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 7/ 18 ID: pone.0315176 — 2025/3/20 — page 8 — #8 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation whereI andJ arethehazyimageandclearimagerespectively.𝜇 and𝜇 aretheaverageofthe I J twoimages,and𝜎 ,𝜎 arethevariancesofthetwoimages.eTh 𝜎 isthecovarianceofI andJ I J IJ oftheimage,andT istherangeofimagepixelvalues.eTh x,yarethehorizontalandvertical coordinatesofthepixelrespectively. eTh expressionsofPSNRareasshownin Eqs(9)and(10): M N MSE = ∑∑ (I(x,y)–J(x,y)) , (9) M∗N x=1 y=1 max 1 I ( ) MSE PSNR = 10log , (10) M∗N whereMSE(MeanSquareError)representsthemeansquareerrorofthehazyimageI and theclearimageJ,M andN aretheimagesizes,andx,yarethehorizontalandverticalcoor- dinatesoftheimage.eTh max isgenerallytakenas255.eTh expressionofUQIisshownin Eq(11),assumingthatthesizeoftheimageisM∗N,xandyarethehorizontalandvertical coordinatesoftheimage: 4𝜎 xy xy UQI = , (11) 2 2 2 2 (𝜎 +𝜎 )[(x) + (y) ] x y M N 1 1 xandyaretheaverageofxandy,whichcanbeexpressedasx = ∑x andy = ∑y. i j M N i=1 j=1 𝜎 and𝜎 arethevarianceoftheimageinthexandydirections,𝜎 isthecovarianceof x y IJ M N 2 2 2 1 2 1 2 theimage.eTh ycanbeexpressedas 𝜎 = ∑(x –x) ,𝜎 = ∑(y –y) ,𝜎 = x i y j xy M–1 N–1 i=1 j=1 M N 2 2 1 1 [ ∑(x –x) ] ⋅ [ ∑(y –y) ].Hereiandjrespectivelyplaytheroleofcounting.In i j M–1 N–1 i=1 j=1 ordertobetterdescribethecharacteristicsofthethreefactorsofcomprehensivecorrelation loss,brightnessdistortionandcontrastdistortionofUQIparameters,UQIcanberewrittenas Eq(12): 𝜎 2xy 2𝜎 𝜎 xy x y UQI = ⋅ ⋅ , (12) 2 2 2 2 𝜎 𝜎 𝜎 +𝜎 x y (x) + (y) x y AVErepresentstheaverageofimagepixelvalues.Inthesameimage,theimagesthatare restoredbydifferentdefoggingmethodscontaindifferentimageinformation.Itsinternal brightness,colorsaturationandotherimageelementswillinterferewiththelevelofpixel values.eTh lowerthepixelvalue,theloweritsrecoveryquality,anditsexpressioncanbe expressedasEq(13). M N AVE = ∑∑E(x,y), (13) M∗N x=1 y=1 wherex,yarethehorizontalandverticalcoordinatesoftheimagepixel,M,N arethelength andwidthdimensionsoftheimage,andE(x,y)isthepixelvalueofthepixel. eTh HCCobjectiveevaluationparameteristocomparethehistogramsoftwoimages anddeterminethesimilarityofthetwohistogramsthroughthecorrelationcoefficientofthe PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 8/ 18 ID: pone.0315176 — 2025/3/20 — page 9 — #9 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation histogramdistribution.eTh higherthevalue,thehigherthematchingdegree,whichmeans thelowertheimagedistortionrateandchromaticaberration. eTh MS-SSIMisanalgorithmusedtocomparethesimilaritybetweentwoimages[ 33].It isdesignedbasedontheperceptionprincipleofthehumanvisualsystemonimagesandcan effectivelyreflectthestructuralsimilarityofimages[ 34,35].eTh algorithmcanbedescribedas Eq(14) 𝜎 j 𝛾 Z j MS-SSIM = [L (x,y)] ⋅∏ [C (x,y)] [S (x,y)] (14) Z j j j=1 Amongthem, [L (x,y)],C (x,y)andS (x,y)havethesamemeaningastheparameter Z j j SSIMinEqs(5)–(7),Zisthethreedimensionsoftheimage,𝜎 ,𝛽 and𝛾 areusedtoadjust Z j j therelativeimportanceofdifferentcomponents. Adaptiveselectionofatmosphericillumination Tovalidatetheeffectivenessofadaptiveatmosphericillumination,weselecttwoimages fromseparateexperimentsandmanuallyadjustedtheatmosphericilluminationsintheB channel.Subsequently,wecomparetheseadjustmentswiththeHCCobjectiveparame- ters.Uponinspectingtheimages,itiseasilyobservedthattheimagetakesonabluishover- allhue,whentheatmosphericilluminationoftheBchannelistoosmall.Althoughthesky mayseesomeimprovement,theordinaryareasexhibitanoticeablebluebias.Conversely, whentheatmosphericilluminationintheB-colorchannelisexcessivelylarge,thenon- brightareasoftheimageexperiencesignificantenhancement.eTh brightskyareamayappear yellowish. UponevaluatingtheimagesandcorrespondingHCCobjectiveparameters,wefoundthat theB-channelatmosphericilluminationtendstoalignwiththeaveragevalueoftheRandG colorchannels,withadeviationofapproximately+0.04.Thisleadstoyellowingoftheimage andcolordistortion.esTh edeviationsgenerallymanifestasquadraticfunctionsandtypically occurwithinarangeof±0.04aroundtheaveragevaluesoftheRandGcolorchannels’atmo- sphericilluminations.IntheRSA,theatmosphericilluminationisselectedthroughadap- tiveoptimizationconsistentlyyieldedimageswithobjectiveparametersthatreachedextreme values,confirmingtheefficacyofours. AccordingtoFig3,itisevidentthatastheatmosphericilluminationintheB-colorchan- nelincreases,theimagegraduallyturnsyellow.Whentheatmosphericilluminationsofthe Snowmountainimagereaches0.8,theimageexhibitsanoticeabledeviationincolor,andfor theTownImage.Andwhentheatmosphericilluminationreaches0.9,theimagetakesona yellowishhue.Fromthis,wecanpreliminarilyinferthattheatmosphericilluminationsforthe twoimagesarelessthan0.8and0.9,respectively.Furthermore,intheSnowmountainImage, theatmosphericilluminationisbelow0.6,andintheTownimage,theatmosphericillumina- tionis0.8,bothresultinginadistinctbluishtint.Weroughlydepictalinegraphillustrating thevariationoftheHCCwithchangesintheatmosphericilluminationintheB-colorchan- nel.AndtheHCCreachesextremevaluesatthesametime.Italignswiththespeculatedrange fromsubjectiveobservation. Superioritytest ToevaluatetheeffectivenessofRSA,TestExperiment1isdesigned.eTh sectionkeepsall othervariablesconstantandreplacestheimprovedtransmissionsuggestedinourmethod PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 9/ 18 ID: pone.0315176 — 2025/3/20 — page 10 — #10 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation Fig3.AtmosphericilluminationvariationimageandtheirHCC-atmosphereofBchannellinechart.(A)–(J)showstheSnowMountainimage A graduallyincreasing,(K)–(T)showstheCityimageA graduallyincreasing,(U)istheHCC-AtmosphereofB-colorchannelLineChartof b b Mountain,(V)istheHCC-AtmosphereofB-colorchannelLineChartofMountain. https://doi.org/10.1371/journal.pone.0315176.g003 withthetransmissionproposedbyDCPbeforeperformingdefogging,namedTestExperi- ment1.Combinethehazyimage,DCPprocessedimage,TestExperiment1processedimage, andtheimageprocessedthoughtourstoformFig4.Moreovercompareitusingthesixobjec- tiveparametersofPSNR,SSIM,AVE,UQI,HHCandMS-SSIMasshowninTable1. UponFig4Band4C,wecandrawthefollowingpoints. • eTh brightnessof Fig4Chasbeenimproved.Itscolorsaturationisclosertotheoriginal image. • ItisevidentthattheimagedetailshaveimprovedinTestExperiment1uponcloserinspec- tionoftheareanearthebridgeinbothimages,includingthewindowdetails. • Whenenlargingthetowerpartoftheimages,thedetailsofthetowerpartoftheimagepro- cessedbyTestExperiment1areclearerthantheimagerepairedbyDCP,andthecoloris morenatural. • ComparetheobjectiveparametersinTable1.eTh parametersinExperiment1arehigher thanthoseinDCP. esTh ecomparisondemonstratestheeffectivenessandrobustnessofthemodifiedatmo- sphericilluminationproposedinRSA.eTh analysisabovefurtherprovesthatplaysakey roleinrepairingimagecolorandimprovingimagebrightnesstoacertainextentinourRSA. However,therearestillsomeproblemsintheprocessedimagesinTestExperiment1. PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 10/ 18 ID: pone.0315176 — 2025/3/20 — page 11 — #11 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation Fig4. Experimentalcomparisonchart.(A)eTh foggyimageoftheimage.(B)eTh dehazedimageaerft darkchan- nelimageprocessing.(C)AnexperimentaldehazingimageforreplacingthealgorithminthispaperwithDCP transmission,whichisTestExperiment1.(D)RSA. https://doi.org/10.1371/journal.pone.0315176.g004 Table1.Objectiveparametersofexperimentalcomparisonchart. Objectiveparameters DCP[12] TestExperiment1 RSA PSNR 63.3504 64.6734 69.1043 SSIM 0.7513 0.8480 0.9902 AVE 0.2761 0.3301 0.3863 UQI 0.6624 0.8141 0.8702 HCC –0.0471 0.2560 0.5680 https://doi.org/10.1371/journal.pone.0315176.t001 • eTh colorsaturationoftherepairedimageisstilltoohigh.Thisseriouslyinterfereswiththe expressionofinformationinimagedetails.eTh overallimageisunnatural. • erTh eisstillhalophenomenonintheskyoftheimage.Whenobservingtheriver,itisnot difficulttofindthatnoiseisintroduced. • Awhitehalophenomenonappearsaroundthetower. eTh rootcauseoftheaboveproblemsisthatthetransmissionisnotaccurateenough.Due toanerrorinimagetransmission,thedehazingprocessisnotfullyeffective.Itresultsina slightlyfoggyimagewithlightercolors.eTh outlineofthetowerclockinthetowerisaeff cted byinaccuratetransmissionofDCPandTestExperiment1,whichresultsinawhiteaperture. OurRSAhassuccessfullycorrectedtheseissues.ExaminingTable1,itisevidentthatsev- eralobjectiveparametershaveimprovedsignificantly.However,despitethesefactors,the AVEvalueoftheimageprocessedbyoursisstillhigherthanthatofTestExperiment1.This demonstratestheaccuracyofthetransmissionestimatedandfurthervalidatesitseffective- ness. Wepreviouslyintroducedsixobjectiveparameters.Table1showsthatthemethodspro- posedhavehigherobjectiveparametermeasurements.eTh reasonforthissituationmaybe thatsomeareashaveablackouterframeintheimageofTestExperiment1.Itindicatesthat theatmosphericilluminationselectedbythemethodsdeviatesfromtheactualvalue.This causestheestimatedtransmissiontoalsodeviate,resultinginerrorsindepthoffieldestima- tion,inaccuratecolorrestoration,lossofdetails,anddeviationsfromtheoriginalimage.eTh PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 11/ 18 ID: pone.0315176 — 2025/3/20 — page 12 — #12 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation lossofdetailscausesadecreaseintheobjectiveparametersofPSNR,SSIM,UQIandMS- SSIM.Halosappearintheskyandalargeamountofnoiseisintroducedduetotheinaccuracy oftransmission,greatlyaeff ctingtheevaluationofparameters.Asaresult,Wecanfindthat theimprovedtransmissioneffectivelyimprovesthequalityoftheimage. Previously,weproposeddarkchannelimagedehazingbasedontheimprovedbinaryimage segmentation(IBS)[36].Inthiswork,wefocusonimprovingtheDCPmethodthroughacol- lectionofmethodstoimproveimagequality.However,asexplainedabove,theimagerepaired bytheIBSwillproduceobviousboundariesattheedgeoftheimagesegmentation.This causestheobservertofeeluncomfortablewhenobservingtheimage,andthesaltandpep- pernoiseisscatteredatthejunctionofthebrightareaandtheordinaryarea.Now,ourwork focusesonimprovingtheDCPmethoditself,byfindingandimprovingtheDCPfailurepart, andrepairingthetransmittanceofthisparttofurtherimprovetheimage.Fig5isanimage producedbytherepairedimagesofthetwomethodsweproposedandtheircorresponding objectiveparameters.Fortheconvenienceofobservation,wenormalizedthedata.Wecansee thatthisworkhaswellavoidedthenoiseproblemattheboundaryandfurtherimprovedthe image.Byobservingthebargraph,wecanfindthatalthoughtheSSIMandUQIofIBSare slightlyhigherthanRSA,thePSNR,AVE,HCC,andMS-SSIMarealllowerthanRSA.RSA isproposedtofixthecolordifferenceproblemoftheimageandbetterensuretheauthen- ticityandreliabilityoftheimagecolor.eTh improvementoftheobjectiveparameterHCCis enoughtoillustratetheeffectivenessofRSA.Inaddition,RSAhasalsomadecorresponding improvementsinalgorithmoperationefficiency. Qualitativeresultsonreal-worldimages Indefoggingmethods,improvingthefogprocessingeffectintheskyregionhasoenft proven challenging.Thisisattributedtothepresenceofbrightareasornoiseinthefoggyimages, whichaeff ctstheaccuracyofatmosphericilluminationselection.Furthermore,theskyareas Fig5.Ourworkcomparison.(A)isIBS[36].(B)isRSA.(C)isimageobjectiveparameterhistogram. https://doi.org/10.1371/journal.pone.0315176.g005 PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 12/ 18 ID: pone.0315176 — 2025/3/20 — page 13 — #13 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation sharevisualcharacteristicswithfog,whichmakestransmissionestimationlessprecise.From theFig6,itisclearthefollow. • DuetotheintroductionofDCI,theDCPhasaninaccurateevaluationoftransmissionin theprocessofimageprocessing.Itoverestimatesthetransmission,causingthedehazed imagetohavetoolargedepthoffieldandlossofdetails,andcannothandleareaswithtoo manybrightareaswell.Inaddition,whentherearetoomanybrightareas,theatmospheric illuminationismistakenlyselectedtothebrightarea.Itmakestheatmosphericillumina- tionsislargerthanactualvalue.Becauseoftheatmosphericilluminations’issues,thetrans- missionisfurtherdeviated.eTh DCPprocessedimageexhibitsanoticeablehaloeffectin theskyandoverallreducedbrightness,accompaniedbyexcessivesaturation.Although DCPhasmanyshortcomingsinimageprocessing,itfundamentallyprovidesanewideafor thetraditionaldehazedimagemethodandhasextremelyfastprocessing. • eTh MAMFinputimageisdecomposedintointensityandLaplacianmodules,whichare enhancedatthepixelandgradientlevelsrespectively.Sincethedetaillayerguaranteesthe gradientinformation,theoutputimagecanproduceresultsthatguaranteedetailseven undersmoothtransmission.AlthoughtheMAMF’salgorithmspeedhasbeenimproved, theimageisover-superimposedinthedetails.Itresultsinseriousdetaillossandexcessive saturationduetotheadditionoflayers. • eTh HRPusesnonlinearcompressiontooptimizetransmissionandimproveaccuracy.At thesametime,ituseslogarithmiccompressiontosimulateDCIofhaze-freeimageand receiveapolishingtransmission.However,thereisalotofnoiseintheskyarea,andalotof noiseisrevealedaerft processing,resultinginhalophenomenon. • AlthoughthePDEproposesthemethodbasedonfindingdarkpixels,whicheffectively improvedtheoverallbrightnessproblemoftheimageandenrichedtheimagedetails.Butit Fig6.Qualitativecomparisonofdifferentmethodsonreal-worldimages. (A)arefoggyimages,(B)areimages processedbyDCP[12].(C)areimagesoptimizedbyMAMF[30].(D)areimagesprocessedbyTDD[37],(E)are imagesprocessedbyPDE[38],and(F)areimagesprocessedbyJCE[39].(G)areRSA. https://doi.org/10.1371/journal.pone.0315176.g006 PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 13/ 18 ID: pone.0315176 — 2025/3/20 — page 14 — #14 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation hasnotfundamentallygottenridoftheconstraintsoftheDCP.eTh imageexhibitexcessive saturation,darkenedbrightness,anddetailsthatarelostinseveralparts. • eTh JCEcombinesthreebasicpreprocessingtechniquestocreateintermediateimagesto enhancecontrastanduseadaptabilitytohandlecomplexandchangingenvironments. Inthefusionstage,itusesanadaptivekernelsizebasedonfaststructuralblockdecom- positiontofuseimagesprocessedbythreebasicpreprocessingtechniques.eTh method greatlyimprovesthecalculationtime,butintermsofimagequality.eTh threetechniques areallbasedonimageenhancementpreprocessingtechniques,whichdonottakeinto accountthefactthatfogexistsandenhancethecontrastoftheimage.Althoughthecon- trastoftheeffectiveinformationoftheimageisenhanced,theimagequalityisnoteffec- tivelyimproved.Duetothefusionofmultipleimages,thedetailsoftheimagearerepeat- edlysuperimposed,whichcausesthedetailstodeepen,becomesblurredandisdifficultto observe.Secondly,theprocessingoftheimagecausestheimagesaturationtoincrease,the depthoffieldtodeepen,andchromaticaberrationtooccurinsomedetailsoftheimage. eTh yresultsinpoorimagequality. Table2.Objectiveevaluationparameters. Objective Figure DCP[12] MAMF[30] TDD[37] PDE[38] JCE[39] RSA parameters PSNR Town 63.3504 65.0244 63.9385 65.2371 60.2194 69.1043 Mountain 61.9267 64.5344 65.4546 63.9213 62.4864 68.3010 Snowmountain 60.9663 67.0110 63.9949 67.2597 62.9520 69.8626 Forest 62.1010 65.3265 67.3813 63.6416 62.6516 70.3602 City 60.0309 65.4584 67.6920 63.9520 60.2866 69.6575 Pampkin 64.1027 65.6477 64.2120 63.6034 61.7083 69.1640 SSIM Town 0.7513 0.7152 0.8524 0.8180 0.5189 0.9002 Mountain 0.7408 0.6847 0.8466 0.7861 0.6883 0.8665 Snowmountain 0.4888 0.6084 0.7229 0.7683 0.6428 0.8911 Forest 0.7673 0.6897 0.9010 0.8072 0.6731 0.9260 City 0.6411 0.7200 0.8592 0.7978 0.6546 0.9260 Pampkin 0.8002 0.7089 0.8079 0.7772 0.6775 0.8848 AVE Town 0.2761 0.3411 0.3319 0.3225 0.1915 0.3863 Mountain 0.2781 0.3484 0.3620 0.3082 0.2724 0.3981 Snowmountain 0.2703 0.3785 0.3897 0.3313 0.2950 0.4037 Forest 0.2538 0.3400 0.3695 0.2826 0.2574 0.3892 City 0.2108 0.3630 0.4029 0.2849 0.2970 0.4282 Pampkin 0.2876 0.3424 0.3182 0.2800 0.2534 0.3864 UQI Town 0.6624 0.7759 0.8483 0.7412 0.3475 0.8702 Mountain 0.6885 0.8137 0.8510 0.7800 0.6989 0.9030 Snowmountain 0.4963 0.7780 0.8389 0.7607 0.7069 0.8498 Forest 0.7368 0.8619 0.9207 0.7819 0.7174 0.9508 City 0.5206 0.7974 0.9288 0.7456 0.5502 0.9396 Pampkin 0.7835 0.8483 0.8524 0.6814 0.6670 0.9217 HCC Town –0.0471 0.0899 0.4502 0.0707 –0.1372 0.5680 Mountain 0.1487 0.1455 0.2441 0.2394 0.0388 0.5896 Snowmountain –0.1143 0.2510 0.1984 –0.0072 0.0481 0.5399 Forest 0.0324 0.2536 0.5893 0.2048 0.0222 0.6633 City –0.1470 0.0402 0.4256 0.1011 –0.0637 0.5587 Pampkin 0.1476 0.2578 0.4423 0.0294 -0.0159 0.5848 MS-SSIM Town 0.8279 0.9076 0.8705 0.9140 0.6960 0.9669 Mountain 0.8567 0.8916 0.8967 0.8672 0.8249 0.9559 Snowmountain 0.8569 0.9491 0.9027 0.9437 0.6457 0.9744 Forest 0.8582 0.8983 0.9241 0.8315 0.7909 0.9499 City 0.8476 0.8795 0.8879 0.8802 0.7924 0.9009 Pampkin 0.8268 0.9042 0.8475 0.8615 0.7763 0.9529 https://doi.org/10.1371/journal.pone.0315176.t002 PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 14/ 18 ID: pone.0315176 — 2025/3/20 — page 15 — #15 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation • eTh RSAoptimizestheatmosphericilluminationbasedontheRayleighScattertheory.It enrichestheeffectiveinformationintheimage,greatlyimprovestheimagequality,ensures theimagedetails,andoptimizesthecolorproblembetweenthedefoggingimageandthe originalfoggyimage.Asthealgorithmcomplexityincreases,thetimecomplexityofoursis relativelyhigh. Incontrast,weoptimizetransmissioninbrightregions,whichsignificantlyimprovesthe visualqualityoftheskyarea.Itcloselyresemblestheoriginalimageintermsofcolor,which avoidscolordistortionanddetailloss.Todemonstratethealgorithm’seffectivenessfurther, weprovideacomparisonofvfi eobjectiveparameters:PSNR,SSIM,AVE,UQI,HCCand MS-SSIM. eTh orderinthetablecorrespondstotheorderinthefigure.Inthe Table2,thesixobjec- tiveparameterswereintroducedpreviously.ByobservingTable2,wecanseethatthe objectiveparametersmeasuredbyourmethodishigherthanthoseofothermethods.eTh rea- sonsforthisphenomenonareanalyzedasfollows.WecanseefromFig6thatthebrightness oftheimageprocessedbymethodsotherthantheRSAisdarker,andtheDCP,MAMF,PDE andJCEprocesscolorlossindetails.Asaresult,theouterframeofsomeareasappearsblack, whichindicatesthattheatmosphericilluminationsselectedbythesealgorithmsdeviatesfrom theactualatmosphericilluminations.Itcausesthetransmissionestimatedbyusinginaccu- rateatmosphericilluminationstoalsodeviateandimagesofdepthoffieldestimationerrors. esTh eparametersresultininaccuratecolorrestoration,lossofdetails,anddeviationsfromthe originalimage.eTh lossofdetailscausestheobjectiveparametersofPSNR,SSIMandUQIto decrease.Duetotheinaccuracyoftransmission,halosappearintheskyandalargeamountof noiseisintroduced,whichgreatlyaeff ctstheevaluationofparameters.Weproposeamethod formodifyingatmosphericilluminationsandtransmission,whichgreatlyimprovestheabove problems,restoresimages,enrichesimagedetails,andimprovesimagequality. Fig7.Performancecomparisonchartofeachmethod.eTh barchartrepresentstheaveragerunningtimeofeach methodonsomedata,andthelinechartrepresentsthemeanoftheobjectiveparametersofeachmethod. https://doi.org/10.1371/journal.pone.0315176.g007 PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 15/ 18 ID: pone.0315176 — 2025/3/20 — page 16 — #16 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation Inordertoconductobjectiveandmulti-anglecomparativeexperiments.Weselectssome imagesfromthedatasetfortimetestingandcalculatestheiraveragevalues.Asshownin Fig7. Bycomparison,itcanbefoundthattherunningtimeofDCP,MAMFandJCEmethods isshorter,buttheimagequalityrestoredbythesethreemethodsisrelativelylow,thecolor isgenerallybiased,andthebrightnessanddepthoffieldaretoohigh,makingitdifficultto observethedetails. eTh runningtimeofTDD,PDEandoursislonger,buttheimagequalityrestoredbythese threemethodsisrelativelyhigh.Amongthem,ourshasashorteraveragerunningtimeanda higherqualityofrestoredimages,whichismoreadvantageous. Fromtheabovecomparativeexperiments,itcanbeseenthatthequalityoftheimageis proportionaltothetimecomplexityofthemethod.Reducingthecomplexityofmethodwhile improvingtheimagequalityisatopicforfutureresearchinthisdirection. Conclusion WeintroduceacolorcompensationdehazingmethodbasedonRayleighScattering.eTh rea- sonsforthelowbrightness,largecolordifference,uncleardetails,haloandotherproblems oftheimageprocessedbythetraditionalimprovedmethodsareanalyzed.ByanalyzingBCP andDCPtheory,thereasonsfortheinaccurateestimationofatmosphericilluminationand transmissionaresummarized.AccordingtoBCPandDCPtheory,RSAfindstheareaswith low-lightimageandoptimizesrestorationquality.Ontheonehand,accordingtoRayleigh scattering,whenatmosphericlightpassesthroughtheatmosphere,itwillscatterduetothe shortwavelengthofbluelight,anditsabilitywillbedamagedtoalargeextent,whichresults inthedifferencebetweenthecoloroftheobjectanditstruecolor.Sincethetransmissionis estimatedbasedontheatmosphericillumination,thedeviationofatmosphericillumination willalsocauseerrorsinthetransmissionoftheimage.Ontheotherhand,DCPfailsinhigh- brightnessareas,whichresultsininaccuratetransmissionestimation,unclearexpressionof processedimagedetails,andaperturephenomenonaroundindividualobjects.Byoptimiz- ingatmosphericilluminationandtransmission,wereducetheimpactoftheaboveproblems ontheimageandimprovetheoverallimagequality.However,itshouldbenotedthatthis methodisnotnecessarilysuitableforallhazeimages,whichisalsoadirectionforourfuture research.AndRSAwilltakealittlelongertoprocesswhenencounteringtoolargeimages.It issignificantlyimportantforourfutureresearchtooptimizethemethodcomplexity,improve themethodprocessingspeedandrobustness. Author contributions Conceptualization:XinGuo. Datacuration:QilongSun. Formalanalysis:XinGuo. Fundingacquisition:JinghuaZhao. Investigation:JinghuaZhao. Methodology:XinGuo. Projectadministration:XinGuo. Resources:YiyangQiao. PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 16/ 18 ID: pone.0315176 — 2025/3/20 — page 17 — #17 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation Sowa ft re: YingyingZhang. Supervision:QilongSun. Validation:XinGuo,YanZhou. Writing–originaldraft: XinGuo. Writing–review&editing:XinGuo,QilongSun,MingchenSun. References 1. Kopf J, Neubert B, Chen B, et al. Deep photo: model-based photograph enhancement and viewing. ACM. 2008. https://doi.org/10.1145/1409060.1409069 2. Sahu G, Seal A, Krejcar O, et al. Single image dehazing using a new color channel. J Visual Commun Image Representation. 2020;74(5):103008. https://doi.org/10.1016/j.jvcir.2020.103008 3. Zhou C, Yang X, Zhang B, et al. An adaptive image enhancement method for a recirculating aquaculture system. Sci Rep. 2017;7(1):6243. https://doi.org/10.1038/s41598-017-06538-9 PMID: 4. Fu Q, Jung C, Xu K. Retinex-based perceptual contrast enhancement in images using luminance adaptation. IEEE Access. 2018;6:61277–86. https://doi.org/10.1109/ACCESS.2018.2870638 5. Galdran A. Image dehazing by artificial multiple-exposure image fusion. Signal Process. 2018;149:135–47. https://doi.org/10.1016/j.sigpro.2018.03.008 6. Zhang W, Dong L, Pan X, Zhou J, Qin L, Xu W. Single image defogging based on multi-channel convolutional MSRCR. IEEE Access. 2019;7:72492–504. https://doi.org/10.1109/ACCESS.2019.2920403 7. Yadav S, Raj K. Underwater image enhancement via color balance and stationary wavelet based fusion. In: 2020 IEEE International Conference for Innovation in Technology (INOCON). IEEE; 2020. p. 1–5. DOI:doi.org/10.1109/INOCON50539.2020.9298231. 8. Sahu G, Seal A. Image dehazing based on luminance stretching. In: 2019 International Conference on Information Technology (ICIT). IEEE; 2019. p. 388–93. https://doi.org/10.1109/ICIT48102.2019.00075 9. Sahu G, Seal A, Yazidi A, Krejcar O. A dual-channel dehaze-net for single image dehazing in visual Internet of Things using PYNQ-Z2 board. IEEE Trans Autom Sci Eng. 2022;21(1):305–19. https://doi.org/10.1109/TASE.2022.3217801 10. Sahu G, Seal A, Bhattacharjee D, Nasipuri M, Brida P, Krejcar O. Trends and prospects of techniques for haze removal from degraded images: A survey. IEEE Trans Emerg Topics Comput Intell. 2022;6(4):762–82. https://doi.org/10.1109/TETCI.2022.3173443 11. Sahu G, Seal A, Bhattacharjee D, Frischer R, Krejcar O. A novel parameter adaptive dual channel MSPCNN based single image dehazing for intelligent transportation systems. IEEE Trans Intell Transp Syst. 2022;24(3):3027–47. https://doi.org/10.1109/TITS.2022.3225797 12. He K, Sun J, Tang X. Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell. 2010;33(12):2341–53. https://doi.org/10.1109/TPAMI.2010.168 PMID: 20820075 13. Yan Y, Ren W, Guo Y, Wang R, Cao X. Image deblurring via extreme channels prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. p. 4003–11. https://doi.org/10.1109/CVPR.2017.738 14. McCartney EJ. Optics of the atmosphere: scattering by molecules and particles. New York; 1976. https://doi.org/10.1063/1.3037551 15. Narasimhan SG, Nayar SK. Contrast restoration of weather degraded images.IEEE Trans Pattern Anal Mach Intell. 2003;25(6):713–24. https://doi.org/10.1109/TPAMI.2003.1201821 16. Nayar SK, Narasimhan SG. Vision in bad weather. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2. IEEE; 1999. p. 820–7. https://doi.org/10.1109/ICCV.1999.790306 17. Tan RT. Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2008. p. 1–8. https://doi.org/10.1109/CVPR.2008.4587643 18. Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, et al. A comparative study of energy minimization methods for markov random fields. In: Computer Vision–ECCV 2006: 9th European Conference on Computer Vision,Graz, Austria, May 7–13, 2006. Proceedings, Part II 9. Springer; 2006. p. 16–29. 19. Chu Y, Chen F, Fu H, Yu H. Haze level evaluation using dark and bright channel prior information. Atmosphere. 2022;13(5):683. https://doi.org/10.3390/atmos13050683 PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 17/ 18 ID: pone.0315176 — 2025/3/20 — page 18 — #18 PLOS ONE Single-image dehazing method based on Rayleigh Scattering and adaptive color compensation 20. Li C, Yuan C, Pan H, Yang Y, Wang Z, Zhou H, et al. Single-image dehazing based on improved bright channel prior and dark channel prior. Electronics. 2023;12(2):299. https://doi.org/10.3390/electronics12020299 21. Zhu Q, Mai J, Shao L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process. 2015;24(11):3522–33. https://doi.org/10.1109/TIP.2015.2446191 PMID: 22. Wan Z, Zhao K, Chu J. A novel attitude measurement method based on forward polarimetric imaging of skylight. IEEE Trans Instrum Meas. 2021;70:1–9. https://doi.org/10.1109/TIM.2021.3063776 . 23. Kansal I, Kasana SS. Improved color attenuation prior based image de-fogging technique. Multimedia Tools Appl. 2020;79(17-18):12069–91. https://doi.org/10.1007/s11042-019-08240-6 24. Sahu G, Seal A, Jaworek-Korjakowska J, Krejcar O. Single image dehazing via fusion of multilevel attention network for vision-based measurement applications. IEEE Trans Instrum Meas. 2023;72:1–15. https://doi.org/10.1109/TIM.2023.3271753 25. He K, Sun J, Tang X. Guided image filtering. IEEE Trans Pattern Anal Mach Intell. 2012;35(6):1397–409. https://doi.org/10.1109/TPAMI.2012.213 PMID: 23599054 26. Yu T, Song K, Miao P, Yang G, Yang H, Chen C. Nighttime single image dehazing via pixel-wise alpha blending. IEEE Access. 2019;7:114619–30. https://doi.org/10.1109/ACCESS.2019.2936049 27. Xu Y, Wen J, Fei L, Zhang Z. Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access. 2015;4:165–88. https://doi.org/10.1109/ACCESS.2015.2511558 28. Gao GX, Lai HC, Jia Z, Liu YQ, Wang YL. Sand-dust image restoration based on reversing the blue channel prior. IEEE Photonics J. 2020;PP(99):1–1. https://doi.org/10.1109/JPHOT.2020.2975833 29. Huang S, Wu D, Yang Y, Zhu H. Image dehazing based on robust sparse representation. IEEE Access. 2018;6:53907–17. https://doi.org/10.1109/ACCESS.2018.2871123 30. Cho Y, Jeong J, Kim A. Model-assisted multiband fusion for single image enhancement and applications to robot vision. IEEE Rob Autom Lett. 2018;3(4):2822–9. https://doi.org/10.1109/LRA.2018.2843127 31. Berman D, Avidan S, et al. Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. p. 1674–82. https://doi.org/10.1109/CVPR.2016.185 32. Fattal R. Dehazing using color-lines. ACM Trans Graphics (TOG). 2014;34(1):1–14. https://doi.org/10.1145/2651362 33. Wang Z, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers, 2003, vol. 2. IEEE; 2003. p. 1398–402. https://doi.org/10.1109/ACSSC.2003.1292216 34. Ayunts H, Grigoryan A, Agaian S. Novel entropy for enhanced thermal imaging and uncertainty quantification. Entropy. 2024;26(5):374. https://doi.org/10.3390/e26050374 PMID: 38785623 35. Trongtirakul T, Agaian S. Transmission map optimization for single image dehazing. In: Multimodal Image Exploitation and Learning 2022. vol. 12100. SPIE; 2022. p. 124–34. https://doi.org/10.1117/12.2621831 36. Ping Y, Xin G, Yan W, Yan Z, Zhenhui S. Image dehazing algorithm based on improved binary segmentation. J Jilin Normal Univ (Natural Science Edition). 2022;43:125–33. https://doi.org/10.16862/j.cnki.issn1674-3873.2022.02.019 37. Shi Z, Feng Y, Zhao M, Zhang E, He L. Let you see in sand dust weather: a method based on halo-reduced dark channel prior dehazing for sand-dust image enhancement. IEEE Access. 2019;7:116722–33. https://doi.org/10.1109/ACCESS.2019.2936444 38. Yang Y, Wang Z. Haze removal: push DCP at the edge. IEEE Signal Process Lett. 2020;27:1405–9. https://doi.org/10.1109/LSP.2020.3013741 39. Nie J, Wu H, Yao S. Image defogging based on joint contrast enhancement and multi-scale fusion. In: 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA). IEEE; 2023. p. 1–7. https://doi.org/10.1109/ICPECA56706.2023.10076167 PLOS ONE https://doi.org/10.1371/journal.pone.0315176 March 20, 2025 18/ 18
PLoS ONE – Public Library of Science (PLoS) Journal
Published: Mar 20, 2025
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.