Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Ferrari, F. Gemignani, C. Macaluso (2010)
Chemotherapy-associated peripheral sensory neuropathy assessed using in vivo corneal confocal microscopy.Archives of neurology, 67 3
Subir Chowdhury, Darrell Smith, A. Saleh, J. Schapansky, A. Marquez, S. Gomes, Eli Akude, Dwane Morrow, N. Calcutt, P. Fernyhough (2012)
Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes.Brain : a journal of neurology, 135 Pt 6
V. Brussee, F. Cunningham, D. Zochodne (2004)
Direct insulin signaling of neurons reverses diabetic neuropathy.Diabetes, 53 7
Q.-G. Xu, X.-Q. Li, S. Kotecha, C. Cheng, H. Sun, D. Zochodne (2004)
Insulin as an in vivo growth factorExperimental Neurology, 188
G. Kymionis, V. Diakonis, Maria Kalyvianaki, D. Portaliou, Charalampos Siganos, V. Kozobolis, A. Pallikaris (2009)
One-year follow-up of corneal confocal microscopy after corneal cross-linking in patients with post laser in situ keratosmileusis ectasia and keratoconus.American journal of ophthalmology, 147 5
P. Chang, Hyman Carrel, Jennifer Huang, I. Wang, Yu-Chih Hou, Wei-Li Chen, Jiun-Yi Wang, F. Hu (2006)
Decreased density of corneal basal epithelium and subbasal corneal nerve bundle changes in patients with diabetic retinopathy.American journal of ophthalmology, 142 3
P. Fernyhough, G. Willars, R. Lindsay, D. Tomlinson (1993)
Insulin and insulin-like growth factor I enhance regeneration in cultured adult rat sensory neuronesBrain Research, 607
(2012)
Impaired adenosine monophosphateactivated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral
A. Labbé, Hong Liang, Chantal Martin, F. Brignole-Baudouin, J. Warnet, C. Baudouin (2006)
Comparative Anatomy of Laboratory Animal Corneas with a New-Generation High-Resolution In Vivo Confocal MicroscopeCurrent Eye Research, 31
(2013)
Early nerve regeneration in diabetic neuropathy after simultaneous pancreas and kidney transplantation
T. Kern, C.M. Miller, J. Tang, Y. Du, S. Ball, L. Berti-Matera (2010)
Comparison of three strains of diabetic rats with respect to the rate at which retinopathy and tactile allodynia developMolecular Vision, 16
Cristian Quattrini, M. Tavakoli, M. Jeziorska, P. Kallinikos, S. Tesfaye, J. Finnigan, A. Marshall, A. Boulton, N. Efron, R. Malik (2007)
Surrogate Markers of Small Fiber Damage in Human Diabetic NeuropathyDiabetes, 56
Simon Grant, Neha Patel, Alisdair Philp, Charlotte Grey, R. Lucas, Russell Foster, J. Bowmaker, Glen Jeffery (2001)
Rod photopigment deficits in albinos are specific to mammals and arise during retinal developmentVisual Neuroscience, 18
L. Müller, C. Marfurt, F. Kruse, T. Tervo (2003)
Corneal nerves: structure, contents and function.Experimental eye research, 76 5
N. Calcutt (2004)
Semi-quantitative real-time PCR for pain research.Methods in molecular medicine, 99
D. Romanovsky, J. Wang, E. Al‐Chaer, J. Stimers, M. Dobretsov (2010)
Comparison of metabolic and neuropathy profiles of rats with streptozotocin-induced overt and moderate insulinopeniaNeuroscience, 170
O. Stachs, A. Zhivov, R. Kraak, J. Stave, R. Guthoff (2007)
In vivo three-dimensional confocal laser scanning microscopy of the epithelial nerve structure in the human corneaGraefe's Archive for Clinical and Experimental Ophthalmology, 245
E. Davidson, L. Coppey, A. Holmes, M. Yorek (2012)
Changes in corneal innervation and sensitivity and acetylcholine-mediated vascular relaxation of the posterior ciliary artery in a type 2 diabetic rat.Investigative ophthalmology & visual science, 53 3
Y. Hoybergs, T. Meert (2007)
The effect of low-dose insulin on mechanical sensitivity and allodynia in type I diabetes neuropathyNeuroscience Letters, 417
Ashutosh Singhal, Chu Cheng, Hong Sun, D. Zochodne (1997)
Near nerve local insulin prevents conduction slowing in experimental diabetesBrain Research, 763
C. Marfurt, Jeremiah Cox, S. Deek, L. Dvorscak (2010)
Anatomy of the human corneal innervation.Experimental eye research, 90 4
A. Sima, Mark Bouchier, Hilary Christensen (1983)
Axonal atrophy in sensory nerves of the diabetic BB‐Wistar rat: A possible early correlate of human diabetic neuropathyAnnals of Neurology, 13
G. Kaye, G. Pappas (1962)
STUDIES ON THE CORNEAThe Journal of Cell Biology, 12
P. Hertz, V. Bril, A. Orszag, A. Ahmed, E. Ng, P. Nwe, M. Ngo, B. Perkins (2011)
Reproducibility of in vivo corneal confocal microscopy as a novel screening test for early diabetic sensorimotor polyneuropathyDiabetic Medicine, 28
E. Davidson, L. Coppey, B. Lu, Victor Arballo, N. Calcutt, C. Gerard, M. Yorek (2010)
The Roles of Streptozotocin Neurotoxicity and Neutral Endopeptidase in Murine Experimental Diabetic NeuropathyExperimental Diabetes Research, 2009
Š. Bursová, P. Dubový, Eva Vlčková‐Moravcová, M. Nemec, I. Klusáková, J. Bělobrádková, J. Bednařík (2012)
Expression of growth-associated protein 43 in the skin nerve fibers of patients with type 2 diabetes mellitusJournal of the Neurological Sciences, 315
E. Midena, E. Brugin, A. Ghirlando, M. Sommavilla, A. Avogaro (2006)
Corneal diabetic neuropathy: a confocal microscopy study.Journal of refractive surgery, 22 9 Suppl
Dipika Patel, M. Tavakoli, J. Craig, N. Efron, C. McGhee (2009)
Corneal Sensitivity and Slit Scanning In Vivo Confocal Microscopy of the Subbasal Nerve Plexus of the Normal Central and Peripheral Human CorneaCornea, 28
G. Prusky, K. Harker, R. Douglas, I. Whishaw (2002)
Variation in visual acuity within pigmented, and between pigmented and albino rat strainsBehavioural Brain Research, 136
P. Pisella, O. Auzerie, Yves Bokobza, C. Debbasch, C. Baudouin (2001)
Evaluation of corneal stromal changes in vivo after laser in situ keratomileusis with confocal microscopy.Ophthalmology, 108 10
C. Jolivalt, Corinne Lee, K. Beiswenger, J. Smith, M. Orlov, Magdalena Torrance, E. Masliah (2008)
Defective insulin signaling pathway and increased glycogen synthase kinase‐3 activity in the brain of diabetic mice: Parallels with Alzheimer's disease and correction by insulinJournal of Neuroscience Research, 86
A. Kobayashi, Hideaki Yokogawa, K. Sugiyama (2006)
In vivo laser confocal microscopy of Bowman's layer of the cornea.Ophthalmology, 113 12
C. Kafarnik, J. Fritsche, S. Reese (2008)
Corneal innervation in mesocephalic and brachycephalic dogs and cats: assessment using in vivo confocal microscopy.Veterinary ophthalmology, 11 6
D. Fernandez, L. Pasquini, D. Dorfman, H. Marcos, R. Rosenstein (2012)
Early distal axonopathy of the visual pathway in experimental diabetes.The American journal of pathology, 180 1
J. Mathew, J. Bergmanson, M. Doughty (2008)
Fine structure of the interface between the anterior limiting lamina and the anterior stromal fibrils of the human cornea.Investigative ophthalmology & visual science, 49 9
(2010)
Comparison of metabolic and neuropathy
Chu Cheng, G. Guo, J. Martínez, Vandana Singh, D. Zochodne (2010)
Dynamic Plasticity of Axons within a Cutaneous MilieuThe Journal of Neuroscience, 30
S. Kirwin, S. Kanaly, N. Linke, J. Edelman (2009)
Strain-dependent increases in retinal inflammatory proteins and photoreceptor FGF-2 expression in streptozotocin-induced diabetic rats.Investigative ophthalmology & visual science, 50 11
(2007)
Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes
J. Moilanen, J. Holopainen, M. Vesaluoma, T. Tervo (2008)
Corneal recovery after lasik for high myopia: a 2-year prospective confocal microscopic studyBritish Journal of Ophthalmology, 92
F. Castro, I. Silos-santiago, Mikel Armentia, M. Barbacid, C. Belmonte (1998)
Corneal innervation and sensitivity to noxious stimuli in trkA knockout miceEuropean Journal of Neuroscience, 10
M. Rosenberg, T. Tervo, I. Immonen, L. Müller, C. Grönhagen‐Riska, M. Vesaluoma (2000)
Corneal structure and sensitivity in type 1 diabetes mellitus.Investigative ophthalmology & visual science, 41 10
Tze‐Jen Huang, S. Price, L. Chilton, N. Calcutt, D. Tomlinson, A. Verkhratsky, P. Fernyhough (2003)
Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia.Diabetes, 52 8
(1984)
The Eye, Vol
N. Pritchard, K. Edwards, Ayda Shahidi, G. Sampson, A. Russell, R. Malik, N. Efron (2011)
Corneal markers of diabetic neuropathy.The ocular surface, 9 1
M. Tavakoli, A. Marshall, R. Pitceathly, H. Fadavi, D. Gow, M. Roberts, N. Efron, A. Boulton, R. Malik (2009)
Corneal confocal microscopy: A novel means to detect nerve fibre damage in idiopathic small fibre neuropathyExperimental Neurology, 223
K. Beiswenger, N. Calcutt, A. Mizisin (2008)
Dissociation of thermal hypoalgesia and epidermal denervation in streptozotocin-diabetic miceNeuroscience Letters, 442
J. Hollingsworth, N. Efron, A. Tullo (2005)
In vivo corneal confocal microscopy in keratoconusOphthalmic and Physiological Optics, 25
Maria Reichard, M. Hovakimyan, A. Wree, A. Meyer-Lindenberg, I. Nolte, Christian Junghans, R. Guthoff, O. Stachs (2010)
Comparative in Vivo Confocal Microscopical Study of the Cornea Anatomy of Different Laboratory AnimalsCurrent Eye Research, 35
C. Toth, V. Brussee, Jose Martinez, D. Mcdonald, F. Cunningham, D. Zochodne (2006)
Rescue and regeneration of injured peripheral nerve axons by intrathecal insulinNeuroscience, 139
N. Calcutt (2004)
Modeling diabetic sensory neuropathy in rats.Methods in molecular medicine, 99
M. Tavakoli, P. Kallinikos, Abid Iqbal, Annie Herbert, H. Fadavi, Nathan Efron, Andrew Boulton, Rayaz Malik (2011)
Corneal confocal microscopy detects improvement in corneal nerve morphology with an improvement in risk factors for diabetic neuropathyDiabetic Medicine, 28
M. Jakus (1954)
Studies on the cornea. I. The fine structure of the rat cornea.American journal of ophthalmology, 38 1:2
N. Efron, K. Edwards, Nicola Roper, N. Pritchard, G. Sampson, Ayda Shahidi, D. Vagenas, A. Russell, J. Graham, M. Dabbah, R. Malik (2010)
Repeatability of Measuring Corneal Subbasal Nerve Fiber Length in Individuals With Type 2 DiabetesEye & Contact Lens: Science & Clinical Practice, 36
R. Guthoff, C. Baudouin, J. Stave (2006)
Atlas of Confocal Laser Scanning In-vivo Microscopy in Ophthalmology
L. Dvorscak, C. Marfurt (2008)
Age-related changes in rat corneal epithelial nerve density.Investigative ophthalmology & visual science, 49 3
M. Tavakoli, Cristian Quattrini, C. Abbott, P. Kallinikos, A. Marshall, J. Finnigan, P. Morgan, N. Efron, R. Malik (2010)
A novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy
(2009)
Straindependent increases in retinal inflammatory proteins and photoreceptor FGF-2 expression in streptozotocin-induced diabetic rats
K. Beiswenger, N. Calcutt, A. Mizisin (2008)
Epidermal nerve fiber quantification in the assessment of diabetic neuropathy.Acta histochemica, 110 5
A. Höke (2012)
Animal Models of Peripheral NeuropathiesNeurotherapeutics, 9
C. Kafarnik, J. Fritsche, S. Reese (2007)
In vivo confocal microscopy in the normal corneas of cats, dogs and birds.Veterinary ophthalmology, 10 4
F. Fantini, O. Johansson (1992)
Expression of growth-associated protein 43 and nerve growth factor receptor in human skin: a comparative immunohistochemical investigation.The Journal of investigative dermatology, 99 6
Tavakoli Tavakoli, Quattrini Quattrini, Abbott Abbott, Kallinikos Kallinikos, Marshall Marshall, Finnigan Finnigan, Morgan Morgan, Efron Efron, Boulton Boulton, Malik Malik (2010a)
Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathyDiabetes Care, 33
M. Tavakoli, M. Mitu-Pretorian, I. Petropoulos, H. Fadavi, O. Asghar, U. Alam, G. Ponirakis, M. Jeziorska, A. Marshall, N. Efron, A. Boulton, T. Augustine, R. Malik (2012)
Corneal Confocal Microscopy Detects Early Nerve Regeneration in Diabetic Neuropathy After Simultaneous Pancreas and Kidney TransplantationDiabetes, 62
E. Davidson, L. Coppey, M. Yorek (2012)
Early loss of innervation of cornea epithelium in streptozotocin-induced type 1 diabetic rats: improvement with ilepatril treatment.Investigative ophthalmology & visual science, 53 13
G. Guo, M. Kan, Jose Martinez, D. Zochodne (2011)
Local insulin and the rapid regrowth of diabetic epidermal axonsNeurobiology of Disease, 43
A. Dorfman, Anna Polosa, S. Joly, S. Chemtob, P. Lachapelle (2009)
Functional and structural changes resulting from strain differences in the rat model of oxygen-induced retinopathy.Investigative ophthalmology & visual science, 50 5
N. Calcutt, C. Jolivalt, P. Fernyhough (2008)
Growth factors as therapeutics for diabetic neuropathy.Current drug targets, 9 1
S. Esquenazi, Jiucheng He, Na Li, N. Bazan, Isi Esquenazi, Haydee Bazan (2007)
Comparative in vivo high‐resolution confocal microscopy of corneal epithelium, sub‐basal nerves and stromal cells in mice with and without dry eye after photorefractive keratectomyClinical & Experimental Ophthalmology, 35
We developed a reliable imaging and quantitative analysis method for in vivo corneal confocal microscopy (CCM) in rodents and used it to determine whether models of type 1 diabetes replicate the depletion of corneal nerves reported in diabetic patients. Quantification was reproducible between observers and stable across repeated time points in two rat strains. Longitudinal studies were performed in normal and streptozotocin (STZ)‐diabetic rats, with innervation of plantar paw skin quantified using standard histological methods after 40 weeks of diabetes. Diabetic rats showed an initial increase, then a gradual reduction in occupancy of nerves in the sub‐basal plexus so that values were significantly lower at week 40 (68 ± 6%) than age‐matched controls (80 ± 2%). No significant loss of stromal or intra‐epidermal nerves was detected. In a separate study, insulin was applied daily to the eye of control and STZ‐diabetic mice and this treatment prevented depletion of nerves of the sub‐basal plexus. Longitudinal studies are viable in rodents using CCM and depletion of distal corneal nerves precedes detectable loss of epidermal nerves in the foot, suggesting that diabetic neuropathy is not length dependent. Loss of insulin‐derived neurotrophic support may contribute to the pathogenesis of corneal nerve depletion in type 1 diabetes.
Journal of the Peripheral Nervous System – Wiley
Published: Dec 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.