Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Anders (1971)
How well do we know 'cosmic' abundancesGeochimica et Cosmochimica Acta, 35
J. Larimer, E. Anders (1970)
Chemical fractionations in meteorites—III. Major element fractionations in chondritesGeochimica et Cosmochimica Acta, 34
P. Goldreich, W. Ward (1973)
The formation of planetesimals.The Astrophysical Journal, 183
A. Cameron (1973)
Accumulation processes in the primitive solar nebulaIcarus, 18
A. G. W. Cameron (1972)
On the Origin of the Solar System
V. S. Safronov (1972)
Symposium on the Origin of the Solar System, Nice
M. Blander, J. Katz (1967)
Condensation of primordial dustGeochimica et Cosmochimica Acta, 31
V. S. Safronov (1969)
Evolution of the Proto‐planetary Cloud and the Formation of the Earth and Planets.
L. Grossman (1972)
Condensation in the primitive solar nebulaGeochimica et Cosmochimica Acta, 36
A. Smales, D. Mapper, A. Wood (1957)
The determination, by radioactivation, of small quantities of nickel, cobalt and copper in rocks, marine sediments and meteoritesAnalyst, 82
S. Tandon, J. Wasson (1968)
Gallium, germanium, indium and iridium variations in a suite of L-group chondritesGeochimica et Cosmochimica Acta, 32
K. Keil, B. Mason, H. B. Wiik, K. Fredriksson (1964)
The Chainpur meteorite, 2173
M. Blander, M. Abdel-Gawad (1969)
The origin of meteorites and the constrained equilibrium condensation theoryGeochimica et Cosmochimica Acta, 33
E. Anders (1964)
Origin, age, and composition of meteoritesSpace Science Reviews, 3
R. T. Dodd (1969)
Metamorphism of ordinary chondrites, 33
J. Wasson (1972)
Formation of ordinary chondrites.Reviews of Geophysics, 10
J. Larimer (1967)
Chemical fractionations in meteorites—I. Condensation of the elementsGeochimica et Cosmochimica Acta, 31
H. S. Carslaw, J. C. Jaeger (1959)
Conduction of Heat in Solids
R. Dodd (1969)
Metamorphism of the ordinary chondrites: A reviewGeochimica et Cosmochimica Acta, 33
J. A. Wood (1963)
Origin of chondrules and chondrites, 2
W. Schmus, J. Wood (1967)
A chemical-petrologic classification for the chondritic meteorites.Geochimica et Cosmochimica Acta, 31
B. Mason (1971)
Handbook of Elemental Abundances in Meteorites
J. Wood (1963)
On the origin of chondrules and chondritesIcarus, 2
E. Anders (1971)
Meteorites and the Early Solar SystemAnnual Review of Astronomy and Astrophysics, 9
J. Larimer, E. Anders (1967)
CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION.Geochimica et Cosmochimica Acta, 31
R. Schmitt, G. Goleš, R. Smith, T. Osborn (1972)
ELEMENTAL ABUNDANCES IN STONE METEORITESMeteoritics, 7
F. Whipple (1966)
Chondrules: Suggestion Concerning the OriginScience, 153
J. Laul, R. Ganapathy, E. Anders, J. Morgan (1973)
Chemical fractionations in meteorites—VI. Accretion temperatures of H-, LL- and E-chondrites, from abundance of volatile trace elementsGeochimica et Cosmochimica Acta, 37
R. Dodd (1968)
Recrystallized chondrules in the Sharps (H-3) chondriteGeochimica et Cosmochimica Acta, 32
W. Ehmann, D. Gillum (1972)
Platinum and gold in chondritic meteoritesChemical Geology, 9
D. R. Case, J. C. Laul, I. Z. Pelly, M. A. Wechter, F. Schmidt‐Bleek, M. E. Lipschutz (1972)
Abundance patterns of thirteen trace elements in primitive carbonaceous and unequilibrated ordinary chondrites, 36
J. Larimer (1973)
Chemical fractionations in meteorites—VII. Cosmothermometry and cosmobarometryGeochimica et Cosmochimica Acta, 37
T. Osborn, R. Smith, R. Schmitt (1973)
Elemental composition of individual chondrules from ordinary chondritesGeochimica et Cosmochimica Acta, 37
U. Krähenbühl, J. Morgan, R. Ganapathy, E. Anders (1973)
Abundance of 17 trace elements in carbonaceous chondrites.Geochimica et Cosmochimica Acta, 37
O. Müller, P. Baedecker, J. Wasson (1971)
Relationship between siderophilic-element content and oxidation state of ordinary chondritesGeochimica et Cosmochimica Acta, 35
Observed differences in the abundance ratios of moderately volatile elements found in ordinary chondrites relative to CI chondrites may have resulted from a continuous loss of nebular gas from the ordinary‐chondrite formation region during condensation. If this occurred, the nebular volatility of these elements should be inversely correlated with their abundance ratios. Such a nebular gas loss can occur as a result of momentum exchange between solids and gases, as a result of interactions between the nebular gas and solar photons or particles at the surface of the nebula, or as a result of the settling of previously condensed solids to the median plane of the nebula.
Meteoritics & Planetary Science – Wiley
Published: Mar 1, 1974
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.