Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yu Hisano, S. Ota, K. Arakawa, M. Muraki, N. Kono, Kazuki Oshita, Tetsushi Sakuma, M. Tomita, Takashi Yamamoto, Yasushi Okada, A. Kawahara (2013)
Quantitative assay for TALEN activity at endogenous genomic lociBiology Open, 2
J. Joung, Jeffry Sander (2012)
TALENs: a widely applicable technology for targeted genome editingNature Reviews Molecular Cell Biology, 14
Erno Wienholds, S. Schulte-Merker, B. Walderich, R. Plasterk (2002)
Target-Selected Inactivation of the Zebrafish rag1 GeneScience, 297
Bedell (2012)
In vivo genome editing using a high-efficiency TALEN systemNature, 491
Adi Shoham, G. Malkinson, Sharon Krief, Y. Shwartz, Yona Ely, N. Ferrara, K. Yaniv, E. Zelzer (2012)
S1P1 inhibits sprouting angiogenesis during vascular developmentDevelopment, 139
D. Carroll (2011)
Genome Engineering With Zinc-Finger NucleasesGenetics, 188
A. Kawahara, T. Nishi, Yu Hisano, Hajime Fukui, A. Yamaguchi, N. Mochizuki (2009)
The Sphingolipid Transporter Spns2 Functions in Migration of Zebrafish Myocardial PrecursorsScience, 323
E. Kupperman, S. An, N. Osborne, S. Waldron, D. Stainier (2000)
A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart developmentNature, 406
Yu Hisano, Naoki Kobayashi, A. Yamaguchi, T. Nishi (2012)
Mouse SPNS2 Functions as a Sphingosine-1-Phosphate Transporter in Vascular Endothelial CellsPLoS ONE, 7
N. Osborne, Koroboshka Brand-Arzamendi, Elke Ober, Suk-Won Jin, H. Verkade, Nathalia Holtzman, D. Yelon, D. Stainier (2008)
The Spinster Homolog, Two of Hearts, Is Required for Sphingosine 1-Phosphate Signaling in ZebrafishCurrent Biology, 18
Le Cong, F. Ran, David Cox, Shuailiang Lin, Robert Barretto, Naomi Habib, P. Hsu, Xuebing Wu, Wenyan Jiang, L. Marraffini, Feng Zhang (2013)
Multiplex Genome Engineering Using CRISPR/Cas SystemsScience, 339
Timothy Dahlem, K. Hoshijima, M. Jurynec, Derrick Gunther, Colby Starker, A. Locke, Allison Weis, D. Voytas, D. Grunwald (2012)
Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish GenomePLoS Genetics, 8
T. Cradick, Eli Fine, C. Antico, Gang Bao (2013)
CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activityNucleic Acids Research, 41
S. Ota, Yu Hisano, M. Muraki, K. Hoshijima, Timothy Dahlem, D. Grunwald, Yasushi Okada, A. Kawahara (2013)
Efficient identification of TALEN‐mediated genome modifications using heteroduplex mobility assaysGenes to Cells, 18
Yu Hisano, T. Nishi, A. Kawahara (2012)
The functional roles of S1P in immunity.Journal of biochemistry, 152 4
S. Spiegel, S. Milstien (2011)
The outs and the ins of sphingosine-1-phosphate in immunityNature Reviews Immunology, 11
Tetsushi Sakuma, Sayaka Hosoi, K. Woltjen, Ken‐ichi Suzuki, K. Kashiwagi, Housei Wada, H. Ochiai, T. Miyamoto, Narudo Kawai, Y. Sasakura, S. Matsuura, Yasushi Okada, A. Kawahara, S. Hayashi, Takashi Yamamoto (2013)
Efficient TALEN construction and evaluation methods for human cell and animal applicationsGenes to Cells, 18
Satoshi Ansai, Tetsushi Sakuma, Takashi Yamamoto, H. Ariga, N. Uemura, R. Takahashi, M. Kinoshita (2013)
Efficient Targeted Mutagenesis in Medaka Using Custom-Designed Transcription Activator-Like Effector NucleasesGenetics, 193
Karen Mendelson, Tomasz Zygmunt, J. Torres-Vázquez, T. Evans, T. Hla (2012)
Sphingosine 1-Phosphate Receptor Signaling Regulates Proper Embryonic Vascular Patterning*The Journal of Biological Chemistry, 288
Yao Zu, Xiangjun Tong, Zhanxiang Wang, Da Liu, R. Pan, Zhe Li, Yingying Hu, Zhou Luo, Peng Huang, Qian Wu, Zuoyan Zhu, Bo Zhang, Shuo Lin (2013)
TALEN-mediated precise genome modification by homologous recombination in zebrafishNature Methods, 10
P. Mali, Luhan Yang, K. Esvelt, J. Aach, M. Guell, James DiCarlo, J. Norville, G. Church (2013)
RNA-Guided Human Genome Engineering via Cas9Science, 339
Hajime Fukui, Ryuki Hanaoka, A. Kawahara (2009)
Noncanonical Activity of Seryl-tRNA Synthetase Is Involved in Vascular DevelopmentCirculation Research, 104
Kelly Beumer, J. Trautman, Ana Bozas, Ji-Long Liu, J. Rutter, J. Gall, D. Carroll (2008)
Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleasesProceedings of the National Academy of Sciences, 105
Jianbin Chen, Xi Zhang, Tiansu Wang, Zhendong Li, G. Guan, Yunhan Hong (2012)
Efficient Detection, Quantification and Enrichment of Subtle Allelic AlterationsDNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes, 19
Tingyu Li, Bo Liu, M. Spalding, D. Weeks, Bing Yang (2012)
High-efficiency TALEN-based gene editing produces disease-resistant riceNature Biotechnology, 30
C. Tobia, P. Chiodelli, S. Nicoli, P. Dell’Era, Simone Buraschi, S. Mitola, E. Foglia, Pieter Loenen, A. Alewijnse, M. Presta (2012)
Sphingosine-1-Phosphate Receptor-1 Controls Venous Endothelial Barrier Integrity in ZebrafishArteriosclerosis, Thrombosis, and Vascular Biology, 32
I. Dawid (2004)
Developmental Biology of ZebrafishAnnals of the New York Academy of Sciences, 1038
A. Bhandoola (2013)
Faculty Opinions recommendation of In vivo genome editing using a high-efficiency TALEN system.
K. Howe, M. Clark, C. Torroja, J. Torrance, Camille Berthelot, Matthieu Muffato, J. Collins, S. Humphray, K. McLaren, L. Matthews, Stuart Mclaren, I. Sealy, M. Cáccamo, C. Churcher, C. Scott, J. Barrett, Romke Koch, Gerd-Jörg Rauch, S. White, W. Chow, Britt Kilian, Leonor Quintais, J. Guerra-Assunção, Yi Zhou, Yong Gu, J. Yen, J. Vogel, T. Eyre, S. Redmond, R. Banerjee, J. Chi, B. Fu, E. Langley, Sean Maguire, G. Laird, D. Lloyd, E. Kenyon, S. Donaldson, H. Sehra, J. Almeida-King, J. Loveland, S. Trevanion, Matt Jones, M. Quail, D. Willey, A. Hunt, J. Burton, S. Sims, K. McLay, Bob Plumb, Joy Davis, C. Clee, K. Oliver, R. Clark, C. Riddle, David Elliott, Glen Threadgold, G. Harden, D. Ware, Sharmin Begum, B. Mortimore, G. Kerry, P. Heath, B. Phillimore, A. Tracey, N. Corby, M. Dunn, Christopher Johnson, J. Wood, S. Clark, S. Pelan, G. Griffiths, Michelle Smith, R. Glithero, Philip Howden, Nicholas Barker, C. Lloyd, Christopher Stevens, J. Harley, K. Holt, G. Panagiotidis, J. Lovell, H. Beasley, C. Henderson, D. Gordon, Katherine Auger, Deborah Wright, J. Collins, C. Raisen, L. Dyer, Kenric Leung, Lauren Robertson, K. Ambridge, D. Leongamornlert, Sarah McGuire, Ruth Gilderthorp, C. Griffiths, Deepa Manthravadi, S. Nichol, G. Barker, S. Whitehead, M. Kay, Jacqueline Brown, Clare Murnane, Emma Gray, M. Humphries, N. Sycamore, Darren Barker, D. Saunders, J. Wallis, A. Babbage, S. Hammond, M. Mashreghi-mohammadi, Lucy Barr, Sancha Martin, P. Wray, A. Ellington, N. Matthews, M. Ellwood, Rebecca Woodmansey, G. Clark, James Cooper, A. Tromans, D. Grafham, C. Skuce, R. Pandian, R. Andrews, Elliot Harrison, A. Kimberley, J. Garnett, Nigel Fosker, R. Hall, P. Garner, Daniel Kelly, C. Bird, S. Palmer, Ines Gehring, A. Berger, Christopher Dooley, Zübeyde Ersan-Ürün, C. Eser, Horst Geiger, Maria Geisler, Lena Karotki, A. Kirn, Judith Konantz, M. Konantz, M. Oberländer, Silke Rudolph-Geiger, Mathias Teucke, C. Lanz, G. Raddatz, K. Osoegawa, B. Zhu, A. Rapp, S. Widaa, C. Langford, Fengtang Yang, S. Schuster, N. Carter, J. Harrow, Z. Ning, Javier Herrero, S. Searle, Anton Enright, R. Geisler, R. Plasterk, Charles Lee, M. Westerfield, P. Jong, L. Zon, J. Postlethwait, C. Nüsslein-Volhard, T. Hubbard, H. Crollius, J. Rogers, D. Stemple (2013)
The zebrafish reference genome sequence and its relationship to the human genomeNature, 496
A. Nasevicius, S. Ekker (2000)
Effective targeted gene ‘knockdown’ in zebrafishNature Genetics, 26
T. Čermák, Erin Doyle, Michelle Christian, Li Wang, Yong Zhang, Clarice Schmidt, J. Baller, N. Somia, A. Bogdanove, D. Voytas (2011)
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targetingNucleic Acids Research, 39
H. Kim, H. Lee, Hyojin Kim, S. Cho, Jin-Soo Kim (2009)
Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly.Genome research, 19 7
C. Thisse, L. Zon (2002)
Organogenesis--Heart and Blood Formation from the Zebrafish Point of ViewScience, 295
T. Hla, Krishnan Venkataraman, J. Michaud (2008)
The vascular S1P gradient-cellular sources and biological significance.Biochimica et biophysica acta, 1781 9
P. Haffter, M. Granato, M. Brand, M. Mullins, M. Hammerschmidt, D. Kane, J. Odenthal, F. Eeden, Yun-Jin Jiang, C. Heisenberg, R. Kelsh, M. Furutani-Seiki, E. Vogelsang, D. Beuchle, Ursula Schach, Cosima Fabian, C. Nüsslein-Volhard (1996)
The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio.Development, 123
Yu Hisano, S. Ota, S. Takada, A. Kawahara (2013)
Functional cooperation of spns2 and fibronectin in cardiac and lower jaw developmentBiology Open, 2
T. Mashimo, T. Kaneko, Tetsushi Sakuma, J. Kobayashi, Y. Kunihiro, B. Voigt, Takashi Yamamoto, T. Serikawa (2013)
Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotesScientific Reports, 3
T. Nishi, Naoki Kobayashi, Yu Hisano, A. Kawahara, A. Yamaguchi (2014)
Molecular and physiological functions of sphingosine 1-phosphate transporters.Biochimica et biophysica acta, 1841 5
Mara Robu, Jon Larson, A. Nasevicius, S. Beiraghi, C. Brenner, S. Farber, S. Ekker (2007)
p53 Activation by Knockdown TechnologiesPLoS Genetics, 3
Zebrafish is a model vertebrate suitable for genetic analysis. Forward genetic analysis via chemical mutagenesis screening has established a variety of zebrafish mutants that are defective in various types of organogenesis, and the genes responsible for the individual mutants have been identified from genome mapping. On the other hand, reverse genetic analysis via targeted gene disruption using embryonic stem (ES) cells (e.g., knockout mouse) can uncover gene functions by investigating the phenotypic effects. However, this approach is mostly limited to mice among the vertebrate models because of the difficulty in establishing ES cells. Recently, new gene targeting technologies, such as the transcription activator‐like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 systems, have been developed: that can directly introduce genome modifications at the targeted genomic locus. Here, we summarize these new and powerful genome editing techniques for the study of zebrafish.
Development, Growth & Differentiation – Wiley
Published: Jan 1, 2014
Keywords: ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.