Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Sakamoto (2001)
dâf Heteronuclear complexes: synthesis, structures and physicochemical aspectsCoordination Chemistry Reviews, 219
J. Costes, F. Dahan, F. Nicodème (2003)
Structure-based description of a step-by-step synthesis of homo- and heterodinuclear (4f, 4f ') lanthanide complexes.Inorganic chemistry, 42 20
E. Fleischer, A. Gebala, A. Levey, P. Tasker (1971)
Conversion of aliphatic and alicyclic polyalcohols to the corresponding primary polyaminesJournal of Organic Chemistry, 36
Cheri Barta, S. Bayly, P. Read, B. Patrick, Robert Thompson, C. Orvig (2008)
Molecular architectures for trimetallic d/f/d complexes: structural and magnetic properties of a LnNi2 core.Inorganic chemistry, 47 7
Masako Kato, Tasuku Ito (1985)
Facile carbon dioxide uptake by zinc(II)-tetraazacycloalkane complexes. 2. X-ray structural studies of (.mu.-monomethyl carbonato)(1,4,8,11-tetraazacyclotetradecane)zinc(II) perchlorate, bis(.mu.-monomethyl carbonato)tris[(1,4,8,12-tetraazacyclopentadecane)zinc(II)] perchlorate, and (monomethyl carbInorganic Chemistry, 24
F. James, M. Roos (1984)
MINUIT-a system for function minimization and analysis of the parameter errors and correlationsComputer Physics Communications, 10
J. Costes, F. Dahan, A. Dupuis, J. Laurent (1997)
Experimental Evidence of a Ferromagnetic Ground State (S = 9/2) for a Dinuclear Gd(III)−Ni(II) ComplexInorganic Chemistry, 36
Tomoka Yamaguchi, Y. Sunatsuki, H. Ishida, M. Kojima, H. Akashi, N. Re, N. Matsumoto, Andrzej Pochaba, J. Mroziňski (2008)
Synthesis, structures, and magnetic properties of face-sharing heterodinuclear Ni(II)-Ln(III) (Ln = Eu, Gd, Tb, Dy) complexes.Inorganic chemistry, 47 13
Takuya Shiga, N. Ito, Akiko Hidaka, H. Ōkawa, S. Kitagawa, M. Ohba (2004)
Series of Trinuclear NiIILnIIINiII Complexes Derived from 2,6-Di(acetoacetyl)pyridine: Synthesis, Structure, and MagnetismInorganic Chemistry, 43
S. Singh, Neeraj Tibrewal, G. Rajaraman (2011)
Density functional studies on dinuclear {Ni(II)Gd(III)} and trinuclear {Ni(II)Gd(III)Ni(II)} complexes: magnetic exchange and magneto-structural maps.Dalton transactions, 40 41
E. Colacio, J. Ruiz, G. Lorusso, E. Brechin, M. Evangelisti (2013)
A ferromagnetically coupled diphenoxo-bridged Gd(3+)-Mn2+ dinuclear complex with a large magneto-caloric effect.Chemical communications, 49 37
Tomoka Yamaguchi, Y. Sunatsuki, H. Ishida, M. Kojima, H. Akashi, N. Re, N. Matsumoto, Andrzej Pochaba, J. Mroziňski (2008)
Synthesis, Structures, and Magnetic Properties of Doubly Face-Sharing Heterotrinuclear NiII–LnIII–NiII (Ln = Eu, Gd, Tb, and Dy) ComplexesBulletin of the Chemical Society of Japan, 81
Masako Kato, Tasuku Ito (1985)
Facile carbon dioxide uptake by zinc(II)-tetraazacycloalkane complexes. 1. Syntheses, characterizations, and chemical properties of (monoalkyl carbonato)(tetraazacycloalkane)zinc(II) complexesInorganic Chemistry, 24
M. Watkinson, M. Fondo, M. Bermejo, A. Sousa, C. McAuliffe, R. Pritchard, N. Jaiboon, Nadeem Aurangzeb, Mohammed Naeem (1999)
Further attempts to rationalise the co-ordination chemistry of manganese with Schiff base ligands and supplementary carboxylate donorsJournal of The Chemical Society-dalton Transactions
J. Borrás-Almenar, J. Clemente-Juan, E. Coronado, B. Tsukerblat (1999)
High-Nuclearity Magnetic Clusters: Generalized Spin Hamiltonian and Its Use for the Calculation of the Energy Levels, Bulk Magnetic Properties, and Inelastic Neutron Scattering Spectra.Inorganic chemistry, 38 26
V. Chandrasekhar, Balasubramanian Pandian, J. Vittal, R. Clérac (2009)
Synthesis, structure, and magnetism of heterobimetallic trinuclear complexes {[L2Co2Ln][X]} [Ln = Eu, X = Cl; Ln = Tb, Dy, Ho, X = NO3; LH3 = (S)P[N(Me)N=CH-C6H3-2-OH-3-OMe]3]: A 3d-4f family of single-molecule magnets.Inorganic chemistry, 48 3
Tomoka Yamaguchi, J. Costes, Yukana Kishima, M. Kojima, Y. Sunatsuki, N. Bréfuel, J. Tuchagues, L. Vendier, W. Wernsdorfer (2010)
Face-sharing heterotrinuclear M(II)-Ln(III)-M(II) (M = Mn, Fe, Co, Zn; Ln = La, Gd, Tb, Dy) complexes: synthesis, structures, and magnetic properties.Inorganic chemistry, 49 20
J. Costes, J. Clemente-Juan, F. Dahan, F. Dumestre, J. Tuchagues (2002)
Dinuclear (FeII, GdIII) Complexes Deriving from Hexadentate Schiff Bases: Synthesis, Structure, and Mössbauer and Magnetic PropertiesInorganic Chemistry, 41
A. Aguiari, E. Bullita, U. Casellato, P. Guerriero, S. Tamburini, P. Vigato, U. Russo (1994)
Preparation, properties and coordination behaviour of planar or tridimensional compartmental Schiff basesInorganica Chimica Acta, 219
Tomoka Yamaguchi, Y. Sunatsuki, M. Kojima, H. Akashi, M. Tsuchimoto, N. Re, S. Osa, N. Matsumoto (2004)
Ferromagnetic NiII-GdIII interactions in complexes with NiGd, NiGdNi, and NiGdGdNi cores supported by tripodal ligands.Chemical communications, 9
C. Benelli, M. Murrie, S. Parsons, R. Winpenny (1999)
Synthesis, structural and magnetic characterisation of a new Mn–Gd pivalate: preparation from a pre-formed hexanuclear cluster†Journal of The Chemical Society-dalton Transactions
J. Costes, F. Dahan, Arnaud Dupuis, J. Laurent (1998)
Structural studies of a dinuclear (Cu, Gd) and two trinuclear (Cu2, Ln) complexes (Ln=Ce, Er). Magnetic properties of two original (Cu, Gd) complexesNew Journal of Chemistry, 22
C. Benelli, D. Gatteschi (2002)
Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals.Chemical reviews, 102 6
E. Colacio, J. Ruiz, A. Mota, M. Palacios, E. Cremades, E. Ruiz, Fraser White, E. Brechin (2012)
Family of carboxylate- and nitrate-diphenoxo triply bridged dinuclear Ni(II)Ln(III) complexes (Ln = Eu, Gd, Tb, Ho, Er, Y): synthesis, experimental and theoretical magneto-structural studies, and single-molecule magnet behavior.Inorganic chemistry, 51 10
E. Colacio, J. Ruiz-Sánchez, Fraser White, E. Brechin (2011)
Strategy for the rational design of asymmetric triply bridged dinuclear 3d-4f single-molecule magnets.Inorganic chemistry, 50 15
Athanassios Boudalis, J. Clemente-Juan, F. Dahan, J. Tuchagues (2004)
New poly-iron(II) complexes of N4O dinucleating Schiff bases and pseudohalides: syntheses, structures, and magnetic and Mössbauer properties.Inorganic chemistry, 43 4
Swapan Chandra, P. Chakraborty, A. Chakravorty (1993)
Mono- and tetra-nuclear manganese(III) complexes of tripodal tris[2-(salicylideneamino)ethyl]aminesJournal of The Chemical Society-dalton Transactions
Constantina Papatriantafyllopoulou, K. Abboud, G. Christou (2011)
Carboxylate-free Mn(III)2Ln(III)2 (Ln = lanthanide) and Mn(III)2Y(III)2 complexes from the use of (2-hydroxymethyl)pyridine: analysis of spin frustration effects.Inorganic chemistry, 50 18
J. Costes, F. Dahan, Arnaud Dupuis (2000)
Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuDgX3.nH2O complexes (LH2 standing for tetradentate Schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO).Inorganic chemistry, 39 2
T. Păsătoiu, J. Sutter, A. Mădălan, Fatima Fellah, C. Duhayon, M. Andruh (2011)
Preparation, crystal structures, and magnetic features for a series of dinuclear [Ni(II)Ln(III)] Schiff-base complexes: evidence for slow relaxation of the magnetization for the Dy(III) derivative.Inorganic chemistry, 50 13
Swapan Chandra, A. Chakravorty (1991)
Flexible polydentate binding and aggregation of a tetramanganese complex with a <3-Å Mn...Mn contact from a mononuclear precursor. The centrosymmetric Mn4O28+ core with peripheral phenolato bridgingInorganic Chemistry, 30
J. Costes, Arnaud Dupuis, J. Laurent (1998)
A Very-High-Spin Molecule: Preparation, Characterization and Magnetic Properties of an FeIII–GdIII Complex with an S = 12/2 Ground StateEuropean Journal of Inorganic Chemistry, 1998
You-Gui Huang, Xiu-Teng Wang, F. Jiang, Song Gao, Mingyan Wu, Q. Gao, Wei Wei, M. Hong (2008)
Cobalt-lanthanide coordination polymers constructed with metalloligands: a ferromagnetic coupled quasi-1D Dy3+ chain showing slow relaxation.Chemistry, 14 33
Qiuhong Chen, Q. Luo, Li‐Min Zheng, Zhi-lin Wang, J. Chen (2002)
A study on the novel d-f heterodinuclear Gd(III)-Ni(II) cryptate: synthesis, crystal structure, and magnetic behavior.Inorganic chemistry, 41 3
J. Costes, L. Vendier (2010)
Structural and Magnetic Studies of New NiII–LnIII ComplexesEuropean Journal of Inorganic Chemistry, 2010
G. Rigaux, R. Inglis, Susan Morrison, A. Prescimone, C. Cadiou, M. Evangelisti, E. Brechin (2011)
Enhancing U(eff) in oxime-bridged [Mn(III)6Ln(III)2] hexagonal prisms.Dalton transactions, 40 18
V. Gómez, L. Vendier, M. Corbella, J. Costes (2012)
Tetranuclear [Co-Gd]2 complexes: aiming at a better understanding of the 3d-Gd magnetic interaction.Inorganic chemistry, 51 11
Pei‐Pei Yang, Xiao-ling Wang, Licun Li, D. Liao (2011)
Synthesis, structure and magnetic properties of a novel family of heterometallic nonanuclear Na(I)2Mn(III)6Ln(III) (Ln = Eu, Gd, Tb, Dy) complexes.Dalton transactions, 40 16
V. Mereacre, Yanhua Lan, R. Clérac, A. Ako, Ian Hewitt, W. Wernsdorfer, G. Buth, C. Anson, A. Powell (2010)
Family of Mn(III)(2)Ln(2)(mu(4)-O) compounds: syntheses, structures, and magnetic properties.Inorganic chemistry, 49 11
Torben Birk, K. Pedersen, Christian Thuesen, T. Weyhermüller, M. Schau-Magnussen, S. Piligkos, H. Weihe, S. Mossin, M. Evangelisti, J. Bendix (2012)
Fluoride bridges as structure-directing motifs in 3d-4f cluster chemistry.Inorganic chemistry, 51 9
J. Costes, F. Dahan, J. García-Tojal (2002)
Dinuclear CoII/GdIII and CoIII/GdIII complexes derived from hexadentate Schiff bases: synthesis, structure, and magnetic properties.Chemistry, 8 23
J. Costes, F. Dahan, W. Wernsdorfer (2006)
Heterodinuclear Cu-Tb single-molecule magnet.Inorganic chemistry, 45 1
J. Borrás-Almenar, J. Clemente-Juan, E. Coronado, B. Tsukerblat (2001)
MAGPACK1 A package to calculate the energy levels, bulk magnetic properties, and inelastic neutron scattering spectra of high nuclearity spin clustersJournal of Computational Chemistry, 22
V. Chandrasekhar, Balasubramanian Pandian, R. Azhakar, J. Vittal, R. Clérac (2007)
Linear Trinuclear Mixed-Metal CoII-GdIII-CoII Single-Molecule Magnet:[L2Co2Gd][NO3]â2CHCl3 (LH3 ) (S)P[N(Me)NdCH-C6H3-2-OH-3-OMe]3)Inorganic Chemistry, 46
F. Cimpoesu, F. Dahan, Sonia Ladeira, M. Ferbinteanu, J. Costes (2012)
Chiral crystallization of a heterodinuclear Ni-Ln series: comprehensive analysis of the magnetic properties.Inorganic chemistry, 51 21
A. Chesman, D. Turner, Kevin Berry, N. Chilton, B. Moubaraki, K. Murray, G. Deacon, S. Batten (2012)
Ln(III)2Mn(III)2 heterobimetallic "butterfly" complexes displaying antiferromagnetic coupling (Ln = Eu, Gd, Tb, Er).Dalton transactions, 41 37
J. Costes, J. García-Tojal, J. Tuchagues, L. Vendier (2009)
Structural and Magnetic Study of a Trinuclear MnII–GdIII–MnII ComplexEuropean Journal of Inorganic Chemistry, 2009
J. Costes, Tomoka Yamaguchi, M. Kojima, L. Vendier (2009)
Experimental evidence for the participation of 5d Gd(III) orbitals in the magnetic interaction in Ni-Gd complexes.Inorganic chemistry, 48 12
Qi-Wei Xie, A. Cui, J. Tao, H. Kou (2012)
Syntheses, structure, and magnetic properties of hexanuclear Mn(III)(2)M(III)(4) (M = Y, Gd, Tb, Dy) complexes.Dalton transactions, 41 35
Thaddeus Boron, J. Kampf, V. Pecoraro (2010)
A mixed 3d-4f 14-metallacrown-5 complex that displays slow magnetic relaxation through geometric control of magnetoanisotropy.Inorganic chemistry, 49 20
M. Andruh, J. Costes, Carmen Díaz, Song Gao (2009)
3d-4f combined chemistry: synthetic strategies and magnetic properties.Inorganic chemistry, 48 8
J. Costes, L. Vendier, W. Wernsdorfer (2011)
Structural and magnetic studies of original tetranuclear CoII-LnIII complexes (LnIII = Gd, Tb, Y).Dalton transactions, 40 8
A strictly heterodinuclear MnIII–Gd complex was prepared from a tripodal ligand and characterized by positive fast‐atom bombardment mass spectrometry, which evidenced replacement of a nitrato counterion by a monoethylcarbonato anion. Variable‐temperature direct current and alternating current studies confirm that the MnIII–Gd magnetic interaction is antiferromagnetic. Fitting of the magnetic susceptibility data yields an extremely weak interaction parameter JMnGd equal to –0.04 cm–1, along with a weak axial zero‐field splitting parameter DMn = 0.1 cm–1. This result confirms that a change in the manganese oxidation state, from MnII to MnIII, corresponds to a radical transformation of the magnetic behavior of Mn–Gd, from a ferromagnetic to an antiferromagnetic interaction. In accordance with the magnetic behavior of CoII–Gd complexes previously studied (high‐spin and low‐spin CoII ions), the observed magnetic behavior change may be explained by the difference in the electronic occupancy of the Mn 3d x 2–y 2 orbital, which is singly occupied for MnII and vacant for MnIII.
European Journal of Inorganic Chemistry – Wiley
Published: Jan 1, 2013
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.