Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Parks, K. Cook, M. Belvin, Nicholas Dompe, R. Fawcett, Kari Huppert, Lory Tan, C. Winter, K. Bogart, Jennifer Deal, Megan Deal-Herr, D. Grant, Marie Marcinko, W. Miyazaki, S. Robertson, K. Shaw, Mariano Tabios, V. Vysotskaia, Lora Zhao, Rachel Andrade, K. Edgar, Elizabeth Howie, Keith Killpack, B. Milash, Amanda Norton, Doua Thao, K. Whittaker, Millicent Winner, L. Friedman, J. Margolis, M. Singer, C. Kopczynski, D. Curtis, T. Kaufman, G. Plowman, G. Duyk, H. Francis-Lang (2004)
Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genomeNature Genetics, 36
M. Adams, S. Celniker, R. Holt, C. Evans, J. Gocayne, P. Amanatides, S. Scherer, P. Li, R. Hoskins, R. Galle, R. George, S. Lewis, S. Richards, M. Ashburner, S. Henderson, G. Sutton, J. Wortman, M. Yandell, Q. Zhang, L. Chen, R. Brandon, Y. Rogers, R. Blazej, M. Champe, B. Pfeiffer, K. Wan, C. Doyle, E. Baxter, G. Helt, C. Nelson, G. Gábor, J. Abril, A. Agbayani, H. An, C. Andrews-Pfannkoch, D. Baldwin, R. Ballew, A. Basu, J. Baxendale, L. Bayraktaroglu, E. Beasley, K. Beeson, P. Benos, B. Berman, D. Bhandari, S. Bolshakov, D. Borkova, M. Botchan, J. Bouck, P. Brokstein, P. Brottier, K. Burtis, D. Busam, H. Butler, É. Cadieu, A. Center, I. Chandra, J. Cherry, S. Cawley, C. Dahlke, L. Davenport, P. Davies, B. Pablos, A. Delcher, Z. Deng, A. Mays, I. Dew, S. Dietz, K. Dodson, L. Doup, M. Downes, S. Dugan-Rocha, B. Dunkov, P. Dunn, K. Durbin, C. Evangelista, C. Ferraz, S. Ferriera, W. Fleischmann, C. Fosler, A. Gabrielian, N. Garg, W. Gelbart, K. Glasser, A. Glodek, F. Gong, J. Gorrell, Z. Gu, P. Guan, M. Harris, N. Harris, D. Harvey, T. Heiman, J. Hernandez, J. Houck, D. Hostin, K. Houston, T. Howland, M. Wei, C. Ibegwam, M. Jalali, F. Kalush, G. Karpen, Z. Ke, J. Kennison, K. Ketchum, B. Kimmel, C. Kodira, C. Kraft, S. Kravitz, D. Kulp, Z. Lai, P. Lasko, Y. Lei, A. Levitsky, J. Li, Z. Li, Y. Liang, X. Lin, X. Liu, B. Mattei, T. McIntosh, M. McLeod, D. McPherson, G. Merkulov, N. Milshina, C. Mobarry, J. Morris, A. Moshrefi, Stephen Mount, M. Moy, B. Murphy, L. Murphy, D. Muzny, D. Nelson, D. Nelson, K. Nelson, K. Nixon, D. Nusskern, J. Pacleb, M. Palazzolo, G. Pittman, S. Pan, J. Pollard, V. Puri, M. Reese, K. Reinert, K. Remington, R. Saunders, F. Scheeler, H. Shen, B. Shue, I. Sidén-Kiamos, M. Simpson, M. Skupski, T. Smith, E. Spier, A. Spradling, M. Stapleton, R. Strong, E. Sun, R. Svirskas, C. Tector, R. Turner, E. Venter, A. Wang, X. Wang, Z. Wang, D. Wassarman, G. Weinstock, J. Weissenbach, S. Williams, WoodageT, K. Worley, D. Wu, S. Yang, Q. Yao, J. Ye, R. Yeh, J. Zaveri, M. Zhan, G. Zhang, Q. Zhao, L. Zheng, X. Zheng, F. Zhong, W. Zhong, X. Zhou, S. Zhu, X. Zhu, H. Smith, R. Gibbs, E. Myers, G. Rubin, J. Venter (2000)
The genome sequence of Drosophila melanogaster.Science, 287 5461
A. Handler, R. Harrell (1999)
Germline transformation of Drosophila melanogaster with the piggyBac transposon vectorInsect Molecular Biology, 8
S. Goodwin, S. Goodwin, B. Taylor, A. Villella, M. Foss, L. Ryner, B. Baker, J. Hall (2000)
Aberrant splicing and altered spatial expression patterns in fruitless mutants of Drosophila melanogaster.Genetics, 154 2
U. Häcker, S. Nystedt, Mojgan Barmchi, C. Horn, E. Wimmer (2003)
piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in DrosophilaProceedings of the National Academy of Sciences of the United States of America, 100
H. Horowitz, C. Berg (1995)
Aberrant splicing and transcription termination caused by P element insertion into the intron of a Drosophila gene.Genetics, 139 1
A. Spradling, Dianne Stern, I. Kiss, J. Roote, T. Laverty, Gerald Rubin (1995)
Gene disruptions using P transposable elements: an integral component of the Drosophila genome project.Proceedings of the National Academy of Sciences of the United States of America, 92 24
P Zhang (1993)
361Genetics, 133
Ping Zhang, A. Spradling (1993)
Efficient and dispersed local P element transposition from Drosophila females.Genetics, 133 2
Raymond Rodriguez, D. Denhardt (1987)
Vectors: A Survey of Molecular Cloning Vectors and Their Uses
C. Horn, N. Offen, S. Nystedt, U. Häcker, E. Wimmer (2003)
piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics.Genetics, 163 2
P. Sadowski (1995)
The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae.Progress in nucleic acid research and molecular biology, 51
AC Spradling (1999)
The BDGP gene disruption project: single P element insertions mutating 25% of vital Drosophila genesProc. Natl. Acad. Sci. USA, 153
AC Spradling (1999)
135Proc. Natl. Acad. Sci. USA, 153
K. Golic, S. Lindquist (1989)
The FLP recombinase of yeast catalyzes site-specific recombination in the drosophila genomeCell, 59
Alfred Handler (2001)
A current perspective on insect gene transformation.Insect biochemistry and molecular biology, 31 2
M. Ashburner (1989)
Drosophila: A Laboratory Handbook
W. Theurkauf, H. Baum, J. Bo, P. Wensink (1986)
Tissue-specific and constitutive alpha-tubulin genes of Drosophila melanogaster code for structurally distinct proteins.Proceedings of the National Academy of Sciences of the United States of America, 83 22
V. Pirrotta (1988)
Vectors for P-mediated transformation in Drosophila.Biotechnology, 10
P. Rørth (1996)
A modular misexpression screen in Drosophila detecting tissue-specific phenotypes.Proceedings of the National Academy of Sciences of the United States of America, 93 22
Melissa Adams, J. Sekelsky (2002)
DROSOPHILA MELANOGASTER
N. Mozden, H. Misra, E. Rhem, D. Beaton, David Stern, T. Laverty, C. Stern, T. Laverty, Rachael Rubin, A. Spradling, G. Rubin, A. Spradling, D. Ho (1999)
The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes.Genetics, 153 1
C Horn (2003)
647Genetics, 163
Marie Gottar, V. Gobert, T. Michel, M. Belvin, G. Duyk, J. Hoffmann, D. Ferrandon, J. Royet (2002)
The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition proteinNature, 416
H. Robertson, C. Preston, R. Phillis, D. Johnson-Schlitz, Wendy Benz, W. Engels (1988)
A stable genomic source of P element transposase in Drosophila melanogaster.Genetics, 118 3
T. Serano, R. Cohen (1995)
A small predicted stem-loop structure mediates oocyte localization of Drosophila K10 mRNA.Development, 121 11
P. Sadowski (1995)
The Flp Recombinase of th 2-μm Plasmid of Saccharomyces cerevisiaeProgress in Nucleic Acid Research and Molecular Biology, 51
P. Rørth (1998)
Gal4 in the Drosophila female germlineMechanisms of Development, 78
Lynn Cooley, R. Kelley, A. Spradling (1988)
Insertional mutagenesis of the Drosophila genome with single P elements.Science, 239 4844
MD Adams, JJ Sekelsky (2002)
From sequence to phenotype: reverse genetics in Drosophila melanogasterNat. Rev. Genet., 3
R. Roseman, E. Johnson, Christopher Rodesch, M. Bjerke, Rod Nagoshi, P. Geyer (1995)
A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster.Genetics, 141 3
Y. Kim, P. Zuo, J. Manley, B. Baker (1992)
The Drosophila RNA-binding protein RBP1 is localized to transcriptionally active sites of chromosomes and shows a functional similarity to human splicing factor ASF/SF2.Genes & development, 6 12B
N. Cho, L. Keyes, Eric Johnson, Jonathan Heller, L. Ryner, F. Karim, M. Krasnow (2002)
Developmental Control of Blood Cell Migration by the Drosophila VEGF PathwayCell, 108
MD Adams (2002)
189Nat. Rev. Genet., 3
With the availability of complete genome sequence for Drosophila melanogaster, one of the next strategic goals for fly researchers is a complete gene knockout collection. The P-element transposon 1 , the workhorse of D. melanogaster molecular genetics, has a pronounced nonrandom insertion spectrum 2 . It has been estimated that 87% saturation of the ∼13,500-gene complement of D. melanogaster 3 might require generating and analyzing up to 150,000 insertions 2 . We describe specific improvements to the lepidopteran transposon piggyBac 4 and the P element that enabled us to tag and disrupt genes in D. melanogaster more efficiently. We generated over 29,000 inserts resulting in 53% gene saturation and a more diverse collection of phenotypically stronger insertional alleles. We found that piggyBac has distinct global and local gene-tagging behavior from that of P elements. Notably, piggyBac excisions from the germ line are nearly always precise, piggyBac does not share chromosomal hotspots associated with P and piggyBac is more effective at gene disruption because it lacks the P bias for insertion in 5′ regulatory sequences.
Nature Genetics – Springer Journals
Published: Feb 22, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.