Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
The accuracy with which graphical elements are judged was assessed in a psychophysical task that parallels the real-life use of graphs. The task is a variant of the Metfessel-Comrey constant-sum method, and an associated model based on Stevens's law is proposed. The stimuli were horizontal and vertical lines, bars, pie and disk slices, cylinders, boxes, and table entries (numbers). Stevens's law exponents were near unity for numbers and 1-dimensional elements but were also close to 1 for elements possessing 2 or 3 apparent dimensions—subjects accommodate extraneous dimensions that do not carry variation, changing the effective dimensionality of the stimulus. Judgment errors were small, with numbers yielding the best performance; elements such as bars and pie slices were judged almost as accurately; disk elements were judged least accurately, but the magnitude of the errors was not large.
Journal of Experimental Psychology Human Perception & Performance – American Psychological Association
Published: Nov 1, 1990
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.