Access the full text.
Sign up today, get DeepDyve free for 14 days.
Kenneth Campellone, J. Leong (2005)
Nck‐independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli TirMolecular Microbiology, 56
I. Ivanov, K. Atarashi, N. Manel, Eoin Brodie, T. Shima, U. Karaoz, D. Wei, Katherine Goldfarb, C. Santee, S. Lynch, T. Tanoue, A. Imaoka, K. Itoh, K. Takeda, Y. Umesaki, K. Honda, D. Littman (2009)
Induction of Intestinal Th17 Cells by Segmented Filamentous BacteriaCell, 139
Yushuan Lai, I. Rosenshine, J. Leong, G. Frankel (2013)
Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coliCellular Microbiology, 15
Naruhisa Ota, Kit Wong, P. Valdez, Yan Zheng, N. Crellin, L. Diehl, W. Ouyang (2011)
IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentiumNature Immunology, 12
Olivier Papapietro, S. Teatero, Ajitha Thanabalasuriar, K. Yuki, E. Diez, Lei Zhu, E. Kang, S. Dhillon, A. Muise, Y. Durocher, Martin Marcinkiewicz, D. Malo, S. Gruenheid (2013)
R-Spondin 2 signaling mediates susceptibility to fatal infectious diarrheaNature communications, 4
S. Rutherford, B. Bassler (2012)
Bacterial quorum sensing: its role in virulence and possibilities for its control.Cold Spring Harbor perspectives in medicine, 2 11
Ana Arbeloa, M. Blanco, Fabiana Moreira, Richard Bulgin, C. López, G. Dahbi, J. Blanco, A. Mora, M. Alonso, Rosalía Mamani, Tânia Gomes, J. Blanco, G. Frankel (2009)
Distribution of espM and espT among enteropathogenic and enterohaemorrhagic Escherichia coliJournal of Medical Microbiology, 58
S. Wiles, G. Dougan, G. Frankel (2005)
Emergence of a ‘hyperinfectious’ bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tractCellular Microbiology, 7
R. Basu, Darrell O'Quinn, D. Silberger, T. Schoeb, L. Fouser, W. Ouyang, R. Hatton, C. Weaver (2012)
Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria.Immunity, 37 6
S. Clare, V. John, A. Walker, J. Hill, C. Abreu-Goodger, C. Hale, D. Goulding, T. Lawley, P. Mastroeni, G. Frankel, Anton Enright, E. Vigorito, G. Dougan (2012)
Enhanced Susceptibility to Citrobacter rodentium Infection in MicroRNA-155-Deficient MiceInfection and Immunity, 81
Jeff Brown, P. Cheresh, Tatiana Goretsky, Elizabeth Managlia, G. Grimm, Hyunji Ryu, M. Zadeh, Ramanarao Dirisina, T. Barrett (2011)
Epithelial Phosphatidylinositol-3-Kinase Signaling Is Required for β-Catenin Activation and Host Defense against Citrobacter rodentium InfectionInfection and Immunity, 79
W. Deng, Carmen Hoog, H. Yu, Yuling Li, Matthew Croxen, N. Thomas, J. Puente, L. Foster, B. Finlay (2009)
A Comprehensive Proteomic Analysis of the Type III Secretome of Citrobacter rodentium*The Journal of Biological Chemistry, 285
Tuyetnhu Pham, T. Lawley (2014)
Emerging insights on intestinal dysbiosis during bacterial infectionsCurrent Opinion in Microbiology, 17
D. Borenshtein, M. McBee, D. Schauer (2008)
Utility of the Citrobacter rodentium infection model in laboratory miceCurrent Opinion in Gastroenterology, 24
Didier Vingadassalom, A. Kazlauskas, Brian Skehan, Hui-Chun Cheng, L. Magoun, D. Robbins, M. Rosen, K. Saksela, J. Leong (2009)
Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspFU during pedestal formationProceedings of the National Academy of Sciences, 106
J. Guttman, Yuling Li, M. Wickham, W. Deng, A. Vogl, B. Finlay (2006)
Attaching and effacing pathogen‐induced tight junction disruption in vivoCellular Microbiology, 8
P. Hardwidge, I. Rodríguez-Escudero, D. Goode, S. Donohoe, J. Eng, D. Goodlett, R. Aebersold, B. Finlay (2004)
Proteomic Analysis of the Intestinal Epithelial Cell Response to Enteropathogenic Escherichia coli*Journal of Biological Chemistry, 279
Myunghoo Kim, S. Kang, Jeongho Park, M. Yanagisawa, Chang Kim (2013)
Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice.Gastroenterology, 145 2
Steven Luperchio, D. Schauer (2001)
Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia.Microbes and infection, 3 4
N. Barker, M. Wetering, H. Clevers (2008)
The intestinal stem cell.Genes & development, 22 14
K. Bergstrom, Vanessa Kissoon‐Singh, Deanna Gibson, Caixia Ma, M. Montero, H. Sham, Natasha Ryz, Tina Huang, A. Velcich, B. Finlay, K. Chadee, B. Vallance (2010)
Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic MucosaPLoS Pathogens, 6
G. Weinstock (2012)
Genomic approaches to studying the human microbiotaNature, 489
S. Gruenheid, I. Sekirov, N. Thomas, W. Deng, Paul O'donnell, D. Goode, Yuling Li, E. Frey, N. Brown, P. Metalnikov, T. Pawson, K. Ashman, B. Finlay (2004)
Identification and characterization of NleA, a non‐LEE‐encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7Molecular Microbiology, 51
N. Kayagaki, M. Wong, Irma Stowe, S. Ramani, Lino Gonzalez, Sachiko Akashi-Takamura, K. Miyake, Juan Zhang, Wyne Lee, A. Muszyński, L. Forsberg, R. Carlson, V. Dixit (2013)
Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4Science, 341
V. Rathinam, S. Vanaja, Lisa Waggoner, Anna Sokolovska, Christine Becker, L. Stuart, J. Leong, K. Fitzgerald (2012)
TRIF Licenses Caspase-11-Dependent NLRP3 Inflammasome Activation by Gram-Negative BacteriaCell, 150
Julian Guttman, Fereshte Samji, Yuling Li, A. Vogl, B. Finlay (2006)
Evidence that Tight Junctions Are Disrupted Due to Intimate Bacterial Contact and Not Inflammation during Attaching and Effacing Pathogen Infection In VivoInfection and Immunity, 74
D. Borenshtein, K. Schlieper, B. Rickman, J. Chapman, C. Schweinfest, J. Fox, D. Schauer (2009)
Decreased Expression of Colonic Slc26a3 and Carbonic Anhydrase IV as a Cause of Fatal Infectious Diarrhea in MiceInfection and Immunity, 77
W. Deng, B. Vallance, Yuling Li, J. Puente, B. Finlay (2003)
Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in miceMolecular Microbiology, 48
Eduardo Diez, Lei Zhu, Sarah Teatero, Marilène Paquet, Roy Mf, Loredo-Osti Jc, Danielle Malo, Samantha Gruenheid (2011)
Identification and characterization of Cri1, a locus controlling mortality during Citrobacter rodentium infection in miceGenes and Immunity, 12
Yan Zheng, P. Valdez, D. Danilenko, Yan Hu, S. Sa, Qian Gong, Alexander Abbas, Z. Modrušan, N. Ghilardi, F. Sauvage, W. Ouyang (2008)
Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogensNature Medicine, 14
S. Winter, Parameth Thiennimitr, Parameth Thiennimitr, M. Winter, B. Butler, D. Huseby, R. Crawford, J. Russell, C. Bevins, L. Adams, R. Tsolis, J. Roth, A. Bäumler (2010)
Gut inflammation provides a respiratory electron acceptor for SalmonellaNature, 467
I. Monteleone, F. Pallone, G. Monteleone (2011)
Th17-related cytokines: new players in the control of chronic intestinal inflammationBMC Medicine, 9
A. Tumanov, E. Koroleva, Xiaohuan Guo, Yugang Wang, A. Kruglov, S. Nedospasov, yang-xin fu (2011)
Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge.Cell host & microbe, 10 1
This study describes an essential role for caspase 11 in driving IL-1 responses against C. rodentium
T Kawai, S Akira (2008)
Toll-like receptor and RIG-I-like receptor signalingAnn. NY Acad. Sci., 1143
Andrey Selyunin, L. Reddick, Bethany Weigele, N. Alto (2014)
Selective Protection of an ARF1-GTP Signaling Axis by a Bacterial Scaffold Induces Bidirectional Trafficking ArrestCell reports, 6
This study is the first to demonstrate that innate immune signalling pathways modulate goblet cell function and defence against C. rodentium infection
D. Gibson, Caixia Ma, K. Bergstrom, Jingtian Huang, C. Man, B. Vallance (2008)
MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during Citrobacter rodentium‐induced colitisCellular Microbiology, 10
M. Torchinsky, J. Garaude, Andrea Martin, J. Blander (2009)
Innate immune recognition of infected apoptotic cells directs TH17 cell differentiationNature, 458
C. Simmons, Nathalie Gonçalves, M. Ghaem-maghami, M. Bajaj‐Elliott, S. Clare, B. Neves, G. Frankel, G. Dougan, T. Macdonald (2002)
Impaired Resistance and Enhanced Pathology During Infection with a Noninvasive, Attaching-Effacing Enteric Bacterial Pathogen, Citrobacter rodentium, in Mice Lacking IL-12 or IFN-γThe Journal of Immunology, 168
(2010)
This study shows that the Tir signalling pathways that are triggered in cultured epithelial cells in vitro by EPEC, EHEC and C
S. Mondot, Seungha Kang, J. Furet, D. Cárcer, C. McSweeney, M. Morrison, P. Marteau, J. Doré, M. Leclerc (2011)
Highlighting new phylogenetic specificities of Crohn's disease microbiotaInflammatory Bowel Diseases, 17
Brett Finlay (2012)
Molecular mechanisms of Escherichia coli pathogenicityNature Reviews Microbiology, 8
W. Deng, J. Puente, S. Gruenheid, Yuling Li, B. Vallance, Alejandra Vázquez, J. Barba, J. Ibarra, Paul O'donnell, P. Metalnikov, K. Ashman, Sansan Lee, D. Goode, T. Pawson, B. Finlay (2004)
Dissecting virulence: systematic and functional analyses of a pathogenicity island.Proceedings of the National Academy of Sciences of the United States of America, 101 10
Sarah Coulthurst, S. Clare, T. Evans, I. Foulds, Kevin Roberts, M. Welch, G. Dougan, G. Salmond (2007)
Quorum sensing has an unexpected role in virulence in the model pathogen Citrobacter rodentiumEMBO reports, 8
O. Marchès, V. Covarelli, Sivan Dahan, C. Cougoule, Pallavi Bhatta, G. Frankel, E. Caron (2008)
EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosisCellular Microbiology, 10
C. Hoffmann, D. Hill, N. Minkah, T. Kirn, A. Troy, D. Artis, F. Bushman (2009)
Community-Wide Response of the Gut Microbiota to Enteropathogenic Citrobacter rodentium Infection Revealed by Deep SequencingInfection and Immunity, 77
JP Nataro, JB Kaper (1998)
Diarrheagenic Escherichia coliClin. Microbiol. Rev., 11
E. Gueguen, E. Cascales (2012)
Promoter Swapping Unveils the Role of the Citrobacter rodentium CTS1 Type VI Secretion System in Interbacterial CompetitionApplied and Environmental Microbiology, 79
B. Willing, A. Vacharaksa, Matthew Croxen, Teerawat Thanachayanont, B. Finlay (2011)
Altering Host Resistance to Infections through Microbial TransplantationPLoS ONE, 6
D. Gibson, M. Montero, M. Ropeleski, K. Bergstrom, Caixia Ma, Sanjoy Ghosh, Helen Merkens, Jingtian Huang, L. Månsson, H. Sham, K. McNagny, B. Vallance (2010)
Interleukin-11 reduces TLR4-induced colitis in TLR2-deficient mice and restores intestinal STAT3 signaling.Gastroenterology, 139 4
S. Wiles, K. Pickard, Katian Peng, T. Macdonald, G. Frankel (2006)
In Vivo Bioluminescence Imaging of the Murine Pathogen Citrobacter rodentiumInfection and Immunity, 74
(2009)
This study shows that SFB of the microbiota can stimulate CD4 + T helper cells to release IL-17 and IL-22
V. Rathinam, S. Vanaja, K. Fitzgerald (2012)
Regulation of inflammasome signalingNature Immunology, 13
L. Higgins, G. Frankel, I. Connerton, Nathalie Gonçalves, G. Dougan, T. MacDonald (1999)
Role of bacterial intimin in colonic hyperplasia and inflammation.Science, 285 5427
G. Frankel, A. Phillips, I. Rosenshine, G. Dougan, J. Kaper, S. Knutton (1998)
Enteropathogenic and enterohaemorrhagic Escherichia coli : more subversive elementsMolecular Microbiology, 30
I. Sekirov, Nicola Tam, Maria Jogova, Marilyn Robertson, Yuling Li, C. Lupp, B. Finlay (2008)
Antibiotic-Induced Perturbations of the Intestinal Microbiota Alter Host Susceptibility to Enteric InfectionInfection and Immunity, 76
S. Lawhon, R. Maurer, M. Suyemoto, C. Altier (2002)
Intestinal short‐chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirAMolecular Microbiology, 46
E. Hart, Ji Yang, M. Tauschek, M. Kelly, M. Wakefield, G. Frankel, E. Hartland, R. Robins-Browne (2008)
RegA, an AraC-Like Protein, Is a Global Transcriptional Regulator That Controls Virulence Gene Expression in Citrobacter rodentiumInfection and Immunity, 76
R. Mundy, D. Pickard, R. Wilson, C. Simmons, G. Dougan, G. Frankel (2003)
Identification of a novel type IV pilus gene cluster required for gastrointestinal colonization of Citrobacter rodentiumMolecular Microbiology, 48
M. Zaki, M. Lamkanfi, T. Kanneganti (2011)
The Nlrp3 inflammasome: contributions to intestinal homeostasis.Trends in immunology, 32 4
R. Mundy, L. Petrovska, Katherine Smollett, Nandi Simpson, R. Wilson, Jun Yu, X. Tu, I. Rosenshine, S. Clare, G. Dougan, G. Frankel (2004)
Identification of a Novel Citrobacter rodentium Type III Secreted Protein, EspI, and Roles of This and Other Secreted Proteins in InfectionInfection and Immunity, 72
K. Bergstrom, H. Sham, M. Zarepour, B. Vallance (2012)
Innate host responses to enteric bacterial pathogens: a balancing act between resistance and toleranceCellular Microbiology, 14
Lauren Zenewicz, X. Yin, Guoyang Wang, E. Elinav, L. Hao, Liping Zhao, R. Flavell (2013)
IL-22 Deficiency Alters Colonic Microbiota To Be Transmissible and ColitogenicThe Journal of Immunology, 190
Mohammed Khan, Caixia Ma, L. Knodler, Yanet Valdez, Yanet Valdez, C. Rosenberger, W. Deng, B. Finlay, B. Vallance (2006)
Toll-Like Receptor 4 Contributes to Colitis Development but Not to Host Defense during Citrobacter rodentium Infection in MiceInfection and Immunity, 74
Darrell O'Quinn, Matthew Palmer, Y. Lee, C. Weaver (2008)
Emergence of the Th17 pathway and its role in host defense.Advances in immunology, 99
C. Hemrajani, C. Berger, K. Robinson, Olivier Marchés, A. Mousnier, G. Frankel (2010)
NleH effectors interact with Bax inhibitor-1 to block apoptosis during enteropathogenic Escherichia coli infectionProceedings of the National Academy of Sciences, 107
(2012)
This article describes the generation of a C. rodentium strain that produces Stx, which can be used as a more realistic model of EHEC infection
(2012)
References 66, 67 and 68 show that the TRIF-type I IFN axis is essential for inflammasome
Anne Bishop, S. Wiles, G. Dougan, G. Frankel (2007)
Cell attachment properties and infectivity of host-adapted and environmentally adapted Citrobacter rodentium.Microbes and infection, 9 11
Wayne Duck, M. Walter, J. Novak, D. Kelly, M. Tomasi, Y. Cong, C. Elson (2007)
Isolation of flagellated bacteria implicated in Crohn's diseaseInflammatory Bowel Diseases, 13
E. Hartland, M. Batchelor, R. Delahay, C. Hale, S. Matthews, G. Dougan, S. Knutton, I. Connerton, G. Frankel (1999)
Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cellsMolecular Microbiology, 32
B. Kenny (1999)
Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modificationsMolecular Microbiology, 31
M. Wlodarska, B. Willing, Kristie Keeney, A. Menendez, K. Bergstrom, Navkiran Gill, Shannon Russell, B. Vallance, B. Finlay (2011)
Antibiotic Treatment Alters the Colonic Mucus Layer and Predisposes the Host to Exacerbated Citrobacter rodentium-Induced ColitisInfection and Immunity, 79
Sanjoy Ghosh, Daniella DeCoffe, Kirsty Brown, Ethendhar Rajendiran, M. Estaki, Chuanbin Dai, A. Yip, D. Gibson (2013)
Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing SepsisPLoS ONE, 8
Nanda Paassen, Audrey Vincent, P. Puiman, Maria p, J. Bouma, Günther Boehm, J. Goudoever, I. Seuningen, I. Renes (2009)
The regulation of the intestinal mucin MUC2 expression by short chain fatty acids: implications for epithelial protection
Alexander Wong, J. Pearson, Michael Bright, D. Múnera, K. Robinson, Sau Lee, G. Frankel, E. Hartland (2011)
Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elementsMolecular Microbiology, 80
(2013)
This study was the first to identify the molecular basis of genetic susceptibility to C
Nicola Petty, Richard Bulgin, V. Crepin, A. Cerdeño-Tárraga, Gunnar Schroeder, M. Quail, Nicola Lennard, Craig Corton, Andrew Barron, L. Clark, A. Toribio, J. Parkhill, G. Dougan, G. Frankel, N. Thomson (2009)
The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coliJournal of Bacteriology, 192
P Chandrakesan (2010)
Novel changes in NF-кB activity during progression and regression phases of hyperplasia: role of MEK, ERK, and p38J. Biol. Chem., 285
H. Shiomi, A. Masuda, S. Nishiumi, Masayuki Nishida, T. Takagawa, Y. Shiomi, H. Kutsumi, R. Blumberg, T. Azuma, Masaru Yoshida (2010)
Gamma Interferon Produced by Antigen-Specific CD4+ T Cells Regulates the Mucosal Immune Responses to Citrobacter rodentium InfectionInfection and Immunity, 78
E. Kiss, C. Vonarbourg, Stefan Kopfmann, E. Hobeika, D. Finke, C. Esser, A. Diefenbach (2011)
Natural Aryl Hydrocarbon Receptor Ligands Control Organogenesis of Intestinal Lymphoid FolliclesScience, 334
Robyn Law, L. Gur-Arie, I. Rosenshine, B. Finlay (2013)
In vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections.Cold Spring Harbor perspectives in medicine, 3 3
M. Brady, Kenneth Campellone, Megha Ghildiyal, J. Leong (2007)
Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck‐independent actin assembly pathwayCellular Microbiology, 9
C. Lupp, Marilyn Robertson, M. Wickham, I. Sekirov, O. Champion, E. Gaynor, B. Finlay (2007)
Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae.Cell host & microbe, 2 3
M. Wickham, N. Brown, E. Boyle, B. Coombes, B. Finlay (2007)
Virulence Is Positively Selected by Transmission Success between Mammalian HostsCurrent Biology, 17
N. Kamada, Yun-Gi Kim, H. Sham, B. Vallance, J. Puente, E. Martens, G. Núñez (2012)
Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut MicrobiotaScience, 336
L. Franchi, T. Eigenbrod, Raúl Muñoz-Planillo, G. Núñez (2009)
The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesisNature Immunology, 10
G. Frankel, A. Phillips (2008)
Attaching effacing Escherichia coli and paradigms of Tir‐triggered actin polymerization: getting off the pedestalCellular Microbiology, 10
Kaoru Geddes, S. Rubino, J. Magalhaes, C. Streutker, L. Bourhis, Joon Cho, S. Robertson, Connie Kim, R. Kaul, D. Philpott, S. Girardin (2011)
Identification of an innate T helper type 17 response to intestinal bacterial pathogensNature Medicine, 17
David SCHAUERlt, S. Falkow (1993)
Attaching and effacing locus of a Citrobacter freundii biotype that causes transmissible murine colonic hyperplasiaInfection and Immunity, 61
P. Chandrakesan, I. Ahmed, Tariq Anwar, Yu Wang, S. Sarkar, Pomila Singh, S. Peleg, S. Umar (2010)
Novel Changes in NF-κB Activity during Progression and Regression Phases of HyperplasiaThe Journal of Biological Chemistry, 285
S. Gruenheid, R. Devinney, R. Devinney, F. Bladt, D. Goosney, S. Gelkop, G. Gish, T. Pawson, B. Finlay (2001)
Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cellsNature Cell Biology, 3
D. Rodrigues, A. Sousa, K. Johnson‐Henry, P. Sherman, M. Gareau (2012)
Probiotics are effective for the prevention and treatment of Citrobacter rodentium-induced colitis in mice.The Journal of infectious diseases, 206 1
M. Kelly, E. Hart, R. Mundy, Olivier Marchés, S. Wiles, Luminita Badea, Shelley Luck, M. Tauschek, G. Frankel, R. Robins-Browne, E. Hartland (2006)
Essential Role of the Type III Secretion System Effector NleB in Colonization of Mice by Citrobacter rodentiumInfection and Immunity, 74
P. Brož, T. Ruby, Kamila Belhocine, D. Bouley, N. Kayagaki, V. Dixit, D. Monack (2012)
Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1Nature, 490
J. Collins, J. Meganck, C. Kuo, K. Francis, G. Frankel (2013)
4D multimodality imaging of Citrobacter rodentium infections in mice.Journal of visualized experiments : JoVE, 78
Alexander Wong, B. Raymond, J. Collins, V. Crepin, G. Frankel (2012)
The enteropathogenic E. coli effector EspH promotes actin pedestal formation and elongation via WASP‐interacting protein (WIP)Cellular Microbiology, 14
(2011)
This study shows that increased IL-22 production by the intestinal microbiota is associated with host resistance to C
J. Collins, C. Chervaux, B. Raymond, M. Derrien, R. Brazeilles, A. Kosta, I. Chambaud, V. Crepin, G. Frankel (2014)
Fermented Dairy Products Modulate Citrobacter rodentium–Induced Colonic HyperplasiaThe Journal of Infectious Diseases, 210
S. Fanning, L. Hall, M. Cronin, Aldert Zomer, John Macsharry, D. Goulding, M. Motherway, F. Shanahan, K. Nally, G. Dougan, D. Sinderen (2012)
Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protectionProceedings of the National Academy of Sciences, 109
T. Gomes, W. Elias, I. Scaletsky, B. Guth, J. Rodrigues, R. Piazza, L. Ferreira, M. Martinez (2016)
Diarrheagenic Escherichia coliBrazilian Journal of Microbiology, 47
David SCHAUERlt, S. Falkow (1993)
The eae gene of Citrobacter freundii biotype 4280 is necessary for colonization in transmissible murine colonic hyperplasiaInfection and Immunity, 61
(2006)
Transforming growth factor-b induces development of the TH 17 lineage Paul
Jörg Fritz, Olga Rojas, N. Simard, Douglas McCarthy, S. Hapfelmeier, S. Rubino, S. Robertson, M. Larijani, J. Gosselin, I. Ivanov, A. Martin, R. Casellas, D. Philpott, S. Girardin, K. McCoy, A. Macpherson, C. Paige, J. Gommerman (2011)
Acquisition of a multifunctional IgA+ plasma cell phenotype in the gutNature, 481
S. Lebeis, B. Bommarius, C. Parkos, M. Sherman, D. Kalman (2007)
TLR Signaling Mediated by MyD88 Is Required for a Protective Innate Immune Response by Neutrophils to Citrobacter rodentium1The Journal of Immunology, 179
Emily Mallick, M. McBee, V. Vanguri, A. Melton-Celsa, K. Schlieper, B. Karalius, A. O’Brien, J. Butterton, J. Leong, D. Schauer (2012)
A novel murine infection model for Shiga toxin-producing Escherichia coli.The Journal of clinical investigation, 122 11
A. Spees, T. Wangdi, Christopher Lopez, D. Kingsbury, M. Xavier, S. Winter, R. Tsolis, A. Bäumler (2013)
Streptomycin-Induced Inflammation Enhances Escherichia coli Gut Colonization Through Nitrate RespirationmBio, 4
Allen Smith, S. Botero, T. Shea-Donohue, J. Urban (2011)
The Pathogenicity of an Enteric Citrobacter rodentium Infection Is Enhanced by Deficiencies in the Antioxidants Selenium and Vitamin EInfection and Immunity, 79
Ji Yang, M. Tauschek, E. Hart, E. Hartland, R. Robins-Browne (2010)
Virulence regulation in Citrobacter rodentium: the art of timingMicrobial biotechnology, 3
D. Borenshtein, P. Nambiar, Elizabeth Groff, J. Fox, D. Schauer (2007)
Development of Fatal Colitis in FVB Mice Infected with Citrobacter rodentiumInfection and Immunity, 75
H. Spits, D. Artis, M. Colonna, A. Diefenbach, J. Santo, G. Eberl, S. Koyasu, R. Locksley, A. McKenzie, R. Mebius, F. Powrie, É. Vivier (2013)
Innate lymphoid cells — a proposal for uniform nomenclatureNature Reviews Immunology, 13
B. Raymond, Joanna Young, Mitchell Pallett, R. Endres, Abigail Clements, G. Frankel (2013)
Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors.Trends in microbiology, 21 8
N. Kayagaki, S. Warming, M. Lamkanfi, L. Walle, S. Louie, Jennifer Dong, K. Newton, Yan Qu, Jinfeng Liu, Sherry Heldens, Juan Zhang, Wyne Lee, M. Roose-Girma, V. Dixit (2011)
Non-canonical inflammasome activation targets caspase-11Nature, 479
Mohammed Khan, S. Bouzari, Caixia Ma, C. Rosenberger, K. Bergstrom, D. Gibson, T. Steiner, B. Vallance (2008)
Flagellin-Dependent and -Independent Inflammatory Responses following Infection by Enteropathogenic Escherichia coli and Citrobacter rodentiumInfection and Immunity, 76
Sanjoy Ghosh, Chuanbin Dai, Kirsty Brown, Ethendhar Rajendiran, Samantha Makarenko, J. Baker, Caixia Ma, Swagata Halder, M. Montero, Vlad Ionescu, A. Klegeris, B. Vallance, D. Gibson (2011)
Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression.American journal of physiology. Gastrointestinal and liver physiology, 301 1
D. Gibson, Caixia Ma, C. Rosenberger, K. Bergstrom, Yanet Valdez, Jingtian Huang, Mohammed Khan, B. Vallance (2007)
Toll‐like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium‐induced colitisCellular Microbiology, 10
L. Higgins, G. Frankel, G. Douce, G. Dougan, T. Macdonald (1999)
Citrobacter rodentium Infection in Mice Elicits a Mucosal Th1 Cytokine Response and Lesions Similar to Those in Murine Inflammatory Bowel DiseaseInfection and Immunity, 67
W. Deng, Yuling Li, B. Vallance, B. Finlay (2001)
Locus of Enterocyte Effacement from Citrobacter rodentium: Sequence Analysis and Evidence for Horizontal Transfer among Attaching and Effacing PathogensInfection and Immunity, 69
T. Lawley, S. Clare, A. Walker, M. Stares, T. Connor, C. Raisen, D. Goulding, R. Rad, F. Schreiber, Cordelia Brandt, Laura Deakin, D. Pickard, S. Duncan, H. Flint, T. Clark, J. Parkhill, G. Dougan (2012)
Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in MicePLoS Pathogens, 8
M. Wlodarska, Christoph Thaiss, Roni Nowarski, Jorge Henao-Mejia, Jian-ping Zhang, E. Brown, G. Frankel, M. Levy, Meirav Katz, Meirav Katz, W. Philbrick, E. Elinav, B. Finlay, R. Flavell, R. Flavell (2014)
NLRP6 Inflammasome Orchestrates the Colonic Host-Microbial Interface by Regulating Goblet Cell Mucus SecretionCell, 156
V. Crepin, Francis Girard, S. Schüller, A. Phillips, A. Mousnier, G. Frankel (2009)
Dissecting the role of the Tir:Nck and Tir:IRTKS/IRSp53 signalling pathways in vivoMolecular Microbiology, 75
(2012)
This study suggests that temporal expression of the virulence factor Ler controls the ability of C
B. Vallance, W. Deng, L. Knodler, B. Finlay (2002)
Mice Lacking T and B Lymphocytes Develop Transient Colitis and Crypt Hyperplasia yet Suffer Impaired Bacterial Clearance during Citrobacter rodentium InfectionInfection and Immunity, 70
T. Kawai, S. Akira (2008)
Toll‐like Receptor and RIG‐1‐like Receptor SignalingAnnals of the New York Academy of Sciences, 1143
Stefanie Weiss, Markus Ladwein, D. Schmidt, Julia Ehinger, S. Lommel, K. Städing, U. Beutling, Andrea Disanza, R. Frank, L. Jänsch, G. Scita, F. Gunzer, K. Rottner, T. Stradal (2009)
IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation.Cell host & microbe, 5 3
Prajwal Gurung, R. Malireddi, P. Anand, D. Demon, L. Walle, Zhiping Liu, P. Vogel, M. Lamkanfi, T. Kanneganti (2012)
Toll or Interleukin-1 Receptor (TIR) Domain-containing Adaptor Inducing Interferon-β (TRIF)-mediated Caspase-11 Protease Production Integrates Toll-like Receptor 4 (TLR4) Protein- and Nlrp3 Inflammasome-mediated Host Defense against Enteropathogens*The Journal of Biological Chemistry, 287
S. Wiles, S. Clare, J. Harker, A. Huett, D. Young, G. Dougan, G. Frankel (2004)
Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentiumCellular Microbiology, 6
R. Mundy, T. Macdonald, G. Dougan, G. Frankel, S. Wiles (2005)
Citrobacter rodentium of mice and manCellular Microbiology, 7
Natasha Ryz, Scott Patterson, Yiqun Zhang, Caixia Ma, Tina Huang, G. Bhinder, Xiujuan Wu, J. Chan, Alexa Glesby, H. Sham, J. Dutz, M. Levings, K. Jacobson, B. Vallance (2012)
Active vitamin D (1,25-dihydroxyvitamin D3) increases host susceptibility to Citrobacter rodentium by suppressing mucosal Th17 responses.American journal of physiology. Gastrointestinal and liver physiology, 303 12
Minsoo Kim, H. Ashida, Michinaga Ogawa, Y. Yoshikawa, H. Mimuro, C. Sasakawa (2010)
Bacterial interactions with the host epithelium.Cell host & microbe, 8 1
Zhiping Liu, M. Zaki, P. Vogel, Prajwal Gurung, B. Finlay, W. Deng, M. Lamkanfi, T. Kanneganti (2012)
Role of Inflammasomes in Host Defense against Citrobacter rodentium Infection*The Journal of Biological Chemistry, 287
H. Sham, Stephanie Shames, Matthew Croxen, Caixia Ma, J. Chan, Mohammed Khan, M. Wickham, W. Deng, B. Finlay, B. Vallance (2011)
Attaching and Effacing Bacterial Effector NleC Suppresses Epithelial Inflammatory Responses by Inhibiting NF-κB and p38 Mitogen-Activated Protein Kinase ActivationInfection and Immunity, 79
C. Simmons, S. Clare, M. Ghaem-maghami, T. Uren, Joanna Rankin, A. Huett, R. Goldin, D. Lewis, T. Macdonald, R. Strugnell, G. Frankel, G. Dougan (2003)
Central Role for B Lymphocytes and CD4+ T Cells in Immunity to Infection by the Attaching and Effacing Pathogen Citrobacter rodentiumInfection and Immunity, 71
P. Chandrakesan, B. Roy, L. Jakkula, Ishfaq Ahmed, P. Ramamoorthy, Ossama Tawfik, Rao Papineni, C. Houchen, S. Anant, Shahid Umar (2014)
Utility of a bacterial infection model to study epithelial–mesenchymal transition, mesenchymal–epithelial transition or tumorigenesisOncogene, 33
The mouse pathogen Citrobacter rodentium is a useful model to investigate important human intestinal diseases, including enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infections, Crohn's disease, ulcerative colitis and colon tumorigenesis. Whole-genome sequencing of multiple pathogenic attaching and effacing (A/E) bacteria has led to the identification of many genes that are involved in pathogenesis, including gene families that encode effector proteins of the type III secretion system (T3SS). The functions of many putative virulence genes have been evaluated in the C. rodentium model, which has improved our understanding of pathogenesis and the corresponding host responses. C. rodentium elicits robust inflammasome-dependent responses in a caspase 1- and caspase 11-dependent manner. Type I interferon signalling is a key factor that regulates inflammasome activation in C. rodentium infection. The intestinal microbiota is crucial for coordinating mucosal immune responses to C. rodentium infection, including the development of IgA+ plasma cells, group 3 innate lymphoid cells (ILC3s; also known as inducible T helper (iTH) cells), TH17 cells and TH22 cells. Defined dietary components, such as vitamin D, vitamin E, selenium, ligands from cruciferous vegetables and polyunsaturated fatty acids (PUFAs), as well as the intestinal microbiota, directly modify mucosal immune responses and epithelial barrier function in response to C. rodentium infection. Future research using the C. rodentium model will focus on quantitative proteomics, metabolomics and four-dimensional (4D) imaging studies to unravel pathogen–host–microbiota interactions in unprecedented detail.
Nature Reviews Microbiology – Springer Journals
Published: Aug 4, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.