Access the full text.
Sign up today, get DeepDyve free for 14 days.
Hyo-Jeong Kim, T. Higashimori, So-Young Park, Hyejeong Choi, Jianying Dong, Yoon-Jung Kim, H. Noh, You-Ree Cho, G. Cline, Young-Bum Kim, Jason Kim (2004)
Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo.Diabetes, 53 4
S. Wullschleger, R. Loewith, M. Hall (2006)
TOR Signaling in Growth and MetabolismCell, 124
Simon Liu, Qing Wang, G. Lienhard, S. Keller (1999)
Insulin Receptor Substrate 3 Is Not Essential for Growth or Glucose Homeostasis*The Journal of Biological Chemistry, 274
M. Lingohr, R. Buettner, C. Rhodes (2002)
Pancreatic beta-cell growth and survival--a role in obesity-linked type 2 diabetes?Trends in molecular medicine, 8 8
Eileen Whiteman, Han Cho, M. Birnbaum (2002)
Role of Akt/protein kinase B in metabolismTrends in Endocrinology & Metabolism, 13
J. Morrisett, G. Abdel-Fattah, B. Kahan (2003)
Sirolimus changes lipid concentrations and lipoprotein metabolism in kidney transplant recipients.Transplantation proceedings, 35 3 Suppl
T. Kitamura, Y. Kitamura, S. Kuroda, Y. Hino, M. Ando, Kei Kotani, H. Konishi, H. Matsuzaki, U. Kikkawa, W. Ogawa, M. Kasuga (1999)
Insulin-Induced Phosphorylation and Activation of Cyclic Nucleotide Phosphodiesterase 3B by the Serine-Threonine Kinase AktMolecular and Cellular Biology, 19
S. Yeaman (2004)
Hormone-sensitive lipase--new roles for an old enzyme.The Biochemical journal, 379 Pt 1
S. Galic, J. Oakhill, G. Steinberg (2010)
Adipose tissue as an endocrine organMolecular and Cellular Endocrinology, 316
E. Jacinto, R. Loewith, A. Schmidt, Shuo Lin, M. Rüegg, A. Hall, M. Hall (2004)
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitiveNature Cell Biology, 6
J. Hirosumi, Gurol Tuncman, Lufen Chang, Cem Görgün, K. Uysal, K. Maeda, M. Karin, G. Hotamisligil (2002)
A central role for JNK in obesity and insulin resistanceNature, 420
H. Ruan, H. Lodish (2004)
Regulation of insulin sensitivity by adipose tissue-derived hormones and inflammatory cytokinesCurrent Opinion in Lipidology, 15
Jason Kim, R. Gimeno, T. Higashimori, Hyo-Jeong Kim, Hyejeong Choi, S. Punreddy, R. Mozell, G. Tan, A. Stricker‐Krongrad, D. Hirsch, Jonathan Fillmore, Zhen-Xiang Liu, Jianying Dong, G. Cline, A. Stahl, H. Lodish, G. Shulman (2004)
Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle.The Journal of clinical investigation, 113 5
M. Yuan, N. Konstantopoulos, Jongsoon Lee, L. Hansen, Zhi-wei Li, M. Karin, S. Shoelson (2001)
Reversal of Obesity- and Diet-Induced Insulin Resistance with Salicylates or Targeted Disruption of IkkβScience, 293
H. Sano, Lorena Eguez, M. Teruel, M. Fukuda, Tuan Chuang, J. Chavez, G. Lienhard, T. McGraw (2007)
Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane.Cell metabolism, 5 4
J. Morrisett, G. Abdel-Fattah, R. Hoogeveen, Eddie Mitchell, C. Ballantyne, H. Pownall, A. Opekun, J. Jaffe, S. Oppermann, B. Kahan (2002)
Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients DOI 10.1194/jlr.M100392-JLR200Journal of Lipid Research, 43
S. Keller (2003)
The insulin-regulated aminopeptidase: a companion and regulator of GLUT4.Frontiers in bioscience : a journal and virtual library, 8
Jin Zhang, Zhanguo Gao, Junyan Yin, M. Quon, Jianping Ye (2008)
S6K Directly Phosphorylates IRS-1 on Ser-270 to Promote Insulin Resistance in Response to TNF-α Signaling through IKK2*Journal of Biological Chemistry, 283
D. Alessi, M. Andjelkovic, Barry Caudwell, P. Cron, N. Morrice, P. Cohen, B. Hemmings (1996)
Mechanism of activation of protein kinase B by insulin and IGF‐1.The EMBO Journal, 15
S. Viswanadha, C. Londos (2008)
Determination of lipolysis in isolated primary adipocytes.Methods in molecular biology, 456
J. García-Martínez, D. Alessi (2008)
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1).The Biochemical journal, 416 3
C. Lumeng, Jennifer Bodzin, A. Saltiel (2007)
Obesity induces a phenotypic switch in adipose tissue macrophage polarization.The Journal of clinical investigation, 117 1
U. Smith (2002)
Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance—is insulin resistance initiated in the adipose tissue?International Journal of Obesity, 26
Kim (2004)
Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscleJ Clin Invest, 113
H. Sano, S. Kane, Eiko Sano, C. Mîinea, J. Asara, William Lane, C. Garner, G. Lienhard (2003)
Insulin-stimulated Phosphorylation of a Rab GTPase-activating Protein Regulates GLUT4 Translocation*The Journal of Biological Chemistry, 278
M. Kuroda, R. Honnor, S. Cushman, C. Londos, I. Simpson (1987)
Regulation of insulin-stimulated glucose transport in the isolated rat adipocyte. cAMP-independent effects of lipolytic and antilipolytic agents.The Journal of biological chemistry, 262 1
G. Shulman, Howard
On Diabetes: Insulin Resistance Cellular Mechanisms of Insulin Resistance
Anil Kumar, T. Harris, S. Keller, K. Choi, M. Magnuson, J. Lawrence (2007)
Muscle-Specific Deletion of Rictor Impairs Insulin-Stimulated Glucose Transport and Enhances Basal Glycogen Synthase ActivityMolecular and Cellular Biology, 28
R. Honnor, G. Dhillon, C. Londos (1985)
cAMP-dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation, and predictability in behavior.The Journal of biological chemistry, 260 28
D. Rosenbaum, R. Haber, A. Dunaif (1993)
Insulin resistance in polycystic ovary syndrome: decreased expression of GLUT-4 glucose transporters in adipocytes.The American journal of physiology, 264 2 Pt 1
Y. Choi, Sunhee Park, S. Hockman, E. Zmuda-Trzebiatowska, F. Svennelid, M. Haluzík, O. Gavrilova, F. Ahmad, L. Pepin, M. Napolitano, M. Taira, F. Sundler, L. Holst, E. Degerman, V. Manganiello (2006)
Alterations in regulation of energy homeostasis in cyclic nucleotide phosphodiesterase 3B-null mice.The Journal of clinical investigation, 116 12
T. Reynolds, Y. Pak, T. Harris, J. Manchester, E. Barrett, J. Lawrence (2005)
Effects of Insulin and Transgenic Overexpression of UDP-glucose Pyrophosphorylase on UDP-glucose and Glycogen Accumulation in Skeletal Muscle Fibers*Journal of Biological Chemistry, 280
T. Ikenoue, K. Inoki, Qian Yang, Xiaoming Zhou, K. Guan (2008)
Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signallingThe EMBO Journal, 27
D. Sarbassov, Siraj Ali, Shomit Sengupta, Joon-ho Sheen, Peggy Hsu, Alex Bagley, Andrew Markhard, D. Sabatini (2006)
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB.Molecular cell, 22 2
M. Pfaffl (2001)
A new mathematical model for relative quantification in real-time RT-PCR.Nucleic acids research, 29 9
E. Abel, O. Peroni, Jason Kim, Young-Bum Kim, O. Boss, E. Hadro, T. Minnemann, G. Shulman, B. Kahn (2001)
Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liverNature, 409
V. Facchinetti, W. Ouyang, Hua Wei, Nelyn Soto, A. Lazorchak, Christine Gould, Carolyne Lowry, A. Newton, Y. Mao, R. Miao, W. Sessa, J. Qin, Pumin Zhang, B. Su, E. Jacinto (2008)
The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase CThe EMBO Journal, 27
R. DeFronzo (1992)
Pathogenesis of Type 2 (non-insulin dependent) diabetes mellitus: a balanced overviewDiabetologia, 35
E. Rosen, R. Kulkarni, P. Sarraf, U. Ozcan, T. Okada, Chung-Hsin Hsu, Daniel Eisenman, M. Magnuson, F. Gonzalez, C. Kahn, B. Spiegelman (2003)
Targeted Elimination of Peroxisome Proliferator-Activated Receptor γ in β Cells Leads to Abnormalities in Islet Mass without Compromising Glucose HomeostasisMolecular and Cellular Biology, 23
N. Maeda, I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, N. Furuyama, H. Kondo, Masahiko Takahashi, Y. Arita, R. Komuro, N. Ouchi, S. Kihara, Y. Tochino, K. Okutomi, M. Horie, S. Takeda, T. Aoyama, T. Funahashi, Y. Matsuzawa (2002)
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30Nature Medicine, 8
C. Holm (2003)
Molecular mechanisms regulating hormone-sensitive lipase and lipolysis.Biochemical Society transactions, 31 Pt 6
E. Bligh, Dyer W.J.A. (1959)
A rapid method of total lipid extraction and purification.Canadian journal of biochemistry and physiology, 37 8
R. Duncan, Maryam Ahmadian, K. Jaworski, E. Sarkadi-Nagy, H. Sul (2007)
Regulation of lipolysis in adipocytes.Annual review of nutrition, 27
Margaret Griffin, Melissa Marcucci, G. Cline, K. Bell, N. Barucci, Dennis Lee, L. Goodyear, E. Kraegen, M. White, G. Shulman (1999)
Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade.Diabetes, 48 6
Shulman (2000)
Cellular mechanisms of insulin resistanceJ Clin Invest, 106
Shaohui Huang, M. Czech (2007)
The GLUT4 glucose transporter.Cell metabolism, 5 4
Kershaw (2004)
Adipose tissue as an endocrine organJ Clin Endocrinol Metab, 89
D. Guertin, Deanna Stevens, Carson Thoreen, A. Burds, Nada Kalaany, J. Moffat, Michael Brown, Kevin Fitzgerald, D. Sabatini (2006)
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1.Developmental cell, 11 6
Christine Kurlawalla-Martinez, B. Stiles, Ying Wang, S. Devaskar, B. Kahn, Hong Wu (2005)
Insulin Hypersensitivity and Resistance to Streptozotocin-Induced Diabetes in Mice Lacking PTEN in Adipose TissueMolecular and Cellular Biology, 25
E. Haar, Seong-il Lee, S. Bandhakavi, T. Griffin, Do-Hyung Kim (2007)
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40Nature Cell Biology, 9
M. Lingohr, R. Buettner, C. Rhodes (2002)
Pancreatic β-cell growth and survival – a role in obesity-linked type 2 diabetes?Trends in Molecular Medicine, 8
C. Shiota, J. Woo, J. Lindner, K. Shelton, M. Magnuson (2006)
Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability.Developmental cell, 11 4
J. Brüning, J. Winnay, S. Bonner-Weir, Simeon Taylor, D. Accili, C. Kahn (1997)
Development of a Novel Polygenic Model of NIDDM in Mice Heterozygous for IR and IRS-1 Null AllelesCell, 88
(2010)
Insulin-induced phosphorA
T. Harris, Todd Huffman, An Chi, J. Shabanowitz, D. Hunt, Anil Kumar, J. Lawrence (2007)
Insulin Controls Subcellular Localization and Multisite Phosphorylation of the Phosphatidic Acid Phosphatase, Lipin 1*Journal of Biological Chemistry, 282
E. Rosen, R. Kulkarni, P. Sarraf, U. Ozcan, T. Okada, Chung-Hsin Hsu, Daniel Eisenman, M. Magnuson, F. Gonzalez, C. Kahn, B. Spiegelman (2003)
Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis.Molecular and cellular biology, 23 20
K. Petersen, G. Shulman (2006)
Etiology of insulin resistance.The American journal of medicine, 119 5 Suppl 1
D. Sarbassov, D. Guertin, Siraj Ali, D. Sabatini (2005)
Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR ComplexScience, 307
P. Polak, Nadine Cybulski, J. Feige, J. Auwerx, M. Rüegg, M. Hall (2008)
Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration.Cell metabolism, 8 5
N. Hay, N. Sonenberg (2004)
Upstream and downstream of mTOR.Genes & development, 18 16
Nadine Cybulski, P. Polak, J. Auwerx, M. Rüegg, M. Hall (2009)
mTOR complex 2 in adipose tissue negatively controls whole-body growthProceedings of the National Academy of Sciences, 106
E. Werner, Jongsoon Lee, L. Hansen, M. Yuan, S. Shoelson (2004)
Insulin Resistance Due to Phosphorylation of Insulin Receptor Substrate-1 at Serine 302*Journal of Biological Chemistry, 279
J. Brüning, M. Michael, J. Winnay, Tatsuya Hayashi, Dieter Hörsch, D. Accili, L. Goodyear, C. Kahn (1998)
A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance.Molecular cell, 2 5
OBJECTIVERictor is an essential component of mammalian target of rapamycin (mTOR) complex (mTORC) 2, a kinase that phosphorylates and activates Akt, an insulin signaling intermediary that regulates glucose and lipid metabolism in adipose tissue, skeletal muscle, and liver. To determine the physiological role of rictor/mTORC2 in insulin signaling and action in fat cells, we developed fat cell–specific rictor knockout (FRic−/−) mice.RESEARCH DESIGN AND METHODSInsulin signaling and glucose and lipid metabolism were studied in FRic−/− fat cells. In vivo glucose metabolism was evaluated by hyperinsulinemic-euglycemic clamp.RESULTSLoss of rictor in fat cells prevents insulin-stimulated phosphorylation of Akt at S473, which, in turn, impairs the phosphorylation of downstream targets such as FoxO3a at T32 and AS160 at T642. However, glycogen synthase kinase-3β phosphorylation at S9 is not affected. The signaling defects in FRic−/− fat cells lead to impaired insulin-stimulated GLUT4 translocation to the plasma membrane and decreased glucose transport. Furthermore, rictor-null fat cells are unable to suppress lipolysis in response to insulin, leading to elevated circulating free fatty acids and glycerol. These metabolic perturbations are likely to account for defects observed at the whole-body level of FRic−/− mice, including glucose intolerance, marked hyperinsulinemia, insulin resistance in skeletal muscle and liver, and hepatic steatosis.CONCLUSIONSRictor/mTORC2 in fat cells plays an important role in whole-body energy homeostasis by mediating signaling necessary for the regulation of glucose and lipid metabolism in fat cells.
Diabetes – Pubmed Central
Published: Mar 23, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.