Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Abstract 1. This paper describes two novel population patterns in the dentate gyrus of the awake rat, termed type 1 and type 2 dentate spikes (DS1, DS2). Their cellular generation and spatial distribution were examined by simultaneous recording of field potentials and unit activity using multiple-site silicon probes and wire electrode arrays. 2. Dentate spikes were large amplitude (2-4 mV), short duration (< 30 ms) field potentials that occurred sparsely during behavioral immobility and slow-wave sleep. Current-source density analysis revealed large sinks in the outer (DS1) and middle (DS2) thirds of the dentate molecular layer, respectively. DS1 and DS2 had similar longitudinal, lateral, and interhemispheric synchrony. 3. Dentate spikes invariably were coupled to synchronous population bursts of putative hilar interneurons. CA3 pyramidal cells, on the other hand were suppressed during dentate spikes. 4. After bilateral removal of the entorhinal cortex, dentate spikes disappeared, whereas sharp wave-associated bursts, reflecting synchronous discharge of the CA3-CA1 network, increased several fold. 5. These physiological characteristics of the dentate spikes suggest that they are triggered by a population burst of layer II stellate cells of the lateral (DS1) and medial (DS2) entorhinal cortex. 6. We suggest that dentate spike-associated synchronized bursts of hilar-region interneurons provide a suppressive effect on the excitability of the CA3-CA1 network in the intact brain. Copyright © 1995 the American Physiological Society
Journal of Neurophysiology – The American Physiological Society
Published: Apr 1, 1995
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.