Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Hakimi, E. Reznik, Chung-Han Lee, C. Creighton, A. Brannon, Augustin Luna, B. Aksoy, E. Liu, R. Shen, William Lee, Yang Chen, S. Stirdivant, P. Russo, Ying-bei Chen, S. Tickoo, V. Reuter, E. Cheng, C. Sander, J. Hsieh, J. Hsieh (2016)
An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma.Cancer cell, 29 1
W. Senapedis, Marsha Crochiere, E. Baloglu, Y. Landesman (2015)
Therapeutic Potential of Targeting PAK Signaling.Anti-cancer agents in medicinal chemistry, 16 1
M. Callow, Felix Clairvoyant, Shirley Zhu, B. Schryver, D. Whyte, J. Bischoff, B. Jallal, T. Smeal (2002)
Requirement for PAK4 in the Anchorage-independent Growth of Human Cancer Cell Lines*The Journal of Biological Chemistry, 277
A. Cadoret, C. Ovejero, B. Terris, E. Souil, Laurence Levy, W. Lamers, J. Kitajewski, A. Kahn, C. Perret (2002)
New targets of β-catenin signaling in the liver are involved in the glutamine metabolismOncogene, 21
M. Radu, Galina Semenova, Rachelle Kosoff, J. Chernoff (2013)
PAK signalling during the development and progression of cancerNature Reviews Cancer, 14
E. Nigg (1995)
Cyclin‐dependent protein kinases: Key regulators of the eukaryotic cell cycleBioEssays, 17
J. Drevs, R. Löser, B. Rattel, N. Esser (2003)
Antiangiogenic potency of FK866/K22.175, a new inhibitor of intracellular NAD biosynthesis, in murine renal cell carcinoma.Anticancer research, 23 6C
W. Ying (2008)
NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.Antioxidants & redox signaling, 10 2
R. Weiss (2003)
p21Waf1/Cip1 as a therapeutic target in breast and other cancers.Cancer cell, 4 6
Ping Gao, Irina Tchernyshyov, Tsung-Cheng Chang, Yun-Sil Lee, Kayoko Kita, Takafumi Ochi, Karen Zeller, A. Marzo, J. Eyk, J. Mendell, Chi Dang (2009)
c-Myc suppression of miR-23 a / b enhances mitochondrial glutaminase expression and glutamine metabolism
Yan Li, Yangguang Shao, Yuxin Tong, T. Shen, Jian Zhang, Yanshu Li, H. Gu, Feng Li (2012)
Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular translocation and signaling.Biochimica et biophysica acta, 1823 2
V. Schreiber, F. Dantzer, J. Amé, G. Murcia (2006)
Poly(ADP-ribose): novel functions for an old moleculeNature Reviews Molecular Cell Biology, 7
M. Heyes, Cai-yu Chen, E. Major, Kuniaki Saito (1997)
Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types.The Biochemical journal, 326 ( Pt 2)
H. Shim, Y. Chun, B. Lewis, C. Dang (1998)
A unique glucose-dependent apoptotic pathway induced by c-Myc.Proceedings of the National Academy of Sciences of the United States of America, 95 4
Hiromi Wettersten, R. Weiss (2013)
Potential biofluid markers and treatment targets for renal cell carcinomaNature Reviews Urology, 10
A. Dart, C. Wells (2013)
P21-activated kinase 4--not just one of the PAK.European journal of cell biology, 92 4-5
Emelyn Shroff, L. Eberlin, Vanessa Dang, A. Gouw, Meital Gabay, S. Adam, D. Bellovin, P. Tran, W. Philbrick, A. García-Ocaña, S. Casey, Yulin Li, C. Dang, R. Zare, D. Felsher (2015)
MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolismProceedings of the National Academy of Sciences, 112
M. Yuneva, Nicola Zamboni, P. Oefner, R. Sachidanandam, Y. Lazebnik (2007)
Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cellsThe Journal of Cell Biology, 178
Weisi Liu, Yuan-feng Yang, Yidong Liu, Haiou Liu, Weijuan Zhang, Le Xu, Yu Zhu, Jiejie Xu (2015)
p21-Activated kinase 4 predicts early recurrence and poor survival in patients with nonmetastatic clear cell renal cell carcinoma.Urologic oncology, 33 5
Cara Jamieson, Manisha Sharma, B. Henderson (2014)
Targeting the β-catenin nuclear transport pathway in cancer.Seminars in cancer biology, 27
H. Inoue, S. Hwang, Aaron Wecksler, B. Hammock, R. Weiss (2011)
Sorafenib attenuates p21 in kidney cancer cells and augments cell death in combination with DNA-damaging chemotherapyCancer Biology & Therapy, 12
A. Niculescu, Xinbin Chen, M. Smeets, L. Hengst, C. Prives, S. Reed (1998)
Effects of p21Cip1/Waf1 at Both the G1/S and the G2/M Cell Cycle Transitions: pRb Is a Critical Determinant in Blocking DNA Replication and in Preventing EndoreduplicationMolecular and Cellular Biology, 18
D. Sampath, T. Zabka, D. Misner, T. O'Brien, P. Dragovich (2015)
Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer.Pharmacology & therapeutics, 151
Hiromi Wettersten, A. Hakimi, D. Morin, C. Bianchi, Megan Johnstone, Dallas Donohoe, J. Trott, Omran Aboud, S. Stirdivant, B. Neri, R. Wolfert, B. Stewart, R. Perego, J. Hsieh, R. Weiss (2015)
Grade-Dependent Metabolic Reprogramming in Kidney Cancer Revealed by Combined Proteomics and Metabolomics Analysis.Cancer research, 75 12
R. Houtkooper, C. Cantó, R. Wanders, J. Auwerx (2010)
The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways.Endocrine reviews, 31 2
T. Nekrasova, A. Minden (2011)
PAK4 is required for regulation of the cell‐cycle regulatory protein p21, and for control of cell‐cycle progressionJournal of Cellular Biochemistry, 112
Molecular Cancer Therapeutics – Unpaywall
Published: Sep 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.