Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Fragmentation of peptides in MALDI in-source decay mediated by hydrogen radicals.

Fragmentation of peptides in MALDI in-source decay mediated by hydrogen radicals. In-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) shares some similarities with the novel fragmentation technique electron capture dissociation (ECD). In both reactions, the otherwise strong N-C(alpha) bond is cleaved, forming fragment ions of the c and z types, while labile posttranslational modifications are preserved. Therefore, it is tempting to assume that ISD and ECD have some mechanistic aspects in common. Because electrons are present in the MALDI plume, we investigated the previously suggested possibility that ISD is a variation of ECD. However, experiments with peptides with only one site for efficient protonation revealed that ISD is not caused by electron capture. Instead, ICD seems to be induced by hydrogen atoms generated by a photochemical reaction of the matrix. We provide evidence for this reaction by hydrogen/deuterium exchange experiments with peptides containing a minimal number of exchangeable hydrogen atoms. The hydrogen atom model in ECD is indirectly supported by the proposed fragmentation mechanism for ISD, because our data suggest that hydrogen radicals can induce fragmentation by cleavage of the N-C(alpha) bond, independent from their origin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analytical Chemistry Pubmed

Fragmentation of peptides in MALDI in-source decay mediated by hydrogen radicals.

Analytical Chemistry , Volume 77 (1): -164 – Jan 24, 2007

Fragmentation of peptides in MALDI in-source decay mediated by hydrogen radicals.


Abstract

In-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) shares some similarities with the novel fragmentation technique electron capture dissociation (ECD). In both reactions, the otherwise strong N-C(alpha) bond is cleaved, forming fragment ions of the c and z types, while labile posttranslational modifications are preserved. Therefore, it is tempting to assume that ISD and ECD have some mechanistic aspects in common. Because electrons are present in the MALDI plume, we investigated the previously suggested possibility that ISD is a variation of ECD. However, experiments with peptides with only one site for efficient protonation revealed that ISD is not caused by electron capture. Instead, ICD seems to be induced by hydrogen atoms generated by a photochemical reaction of the matrix. We provide evidence for this reaction by hydrogen/deuterium exchange experiments with peptides containing a minimal number of exchangeable hydrogen atoms. The hydrogen atom model in ECD is indirectly supported by the proposed fragmentation mechanism for ISD, because our data suggest that hydrogen radicals can induce fragmentation by cleavage of the N-C(alpha) bond, independent from their origin.

Loading next page...
 
/lp/pubmed/fragmentation-of-peptides-in-maldi-in-source-decay-mediated-by-xCHZiDo29M

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0003-2700
DOI
10.1021/ac0489115
pmid
15623293

Abstract

In-source decay (ISD) in matrix-assisted laser desorption/ionization (MALDI) shares some similarities with the novel fragmentation technique electron capture dissociation (ECD). In both reactions, the otherwise strong N-C(alpha) bond is cleaved, forming fragment ions of the c and z types, while labile posttranslational modifications are preserved. Therefore, it is tempting to assume that ISD and ECD have some mechanistic aspects in common. Because electrons are present in the MALDI plume, we investigated the previously suggested possibility that ISD is a variation of ECD. However, experiments with peptides with only one site for efficient protonation revealed that ISD is not caused by electron capture. Instead, ICD seems to be induced by hydrogen atoms generated by a photochemical reaction of the matrix. We provide evidence for this reaction by hydrogen/deuterium exchange experiments with peptides containing a minimal number of exchangeable hydrogen atoms. The hydrogen atom model in ECD is indirectly supported by the proposed fragmentation mechanism for ISD, because our data suggest that hydrogen radicals can induce fragmentation by cleavage of the N-C(alpha) bond, independent from their origin.

Journal

Analytical ChemistryPubmed

Published: Jan 24, 2007

There are no references for this article.