Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Takuma, Jun Yao, Jianmin Huang, Hong Xu, X. Chen, J. Luddy, A. Trillat, D. Stern, O. Arancio, S. Yan (2005)
ABAD enhances Aβ‐induced cell stress via mitochondrial dysfunctionThe FASEB Journal, 19
S. Sisodia, E. Koo, K. Beyreuther, A. Unterbeck, D. Price (1990)
Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing.Science, 248 4954
L. Mucke, E. Masliah, Gui-qiu Yu, M. Mallory, E. Rockenstein, G. Tatsuno, K. Hu, D. Kholodenko, K. Johnson-wood, L. McConlogue (2000)
High-Level Neuronal Expression of Aβ1–42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque FormationThe Journal of Neuroscience, 20
R. Ensenauer, H. Niederhoff, J. Ruiter, R. Wanders, K. Schwab,, M. Brandis, W. Lehnert (2002)
Clinical variability in 3‐hydroxy‐2‐methylbutyryl‐coa dehydrogenase deficiencyAnnals of Neurology, 51
Xue‐Ying He, G. Wen, G. Merz, Dawei Lin, Ying-Zi Yang, P. Mehta, H. Schulz, Song-Yu Yang (2002)
Abundant type 10 17 beta-hydroxysteroid dehydrogenase in the hippocampus of mouse Alzheimer's disease model.Brain research. Molecular brain research, 99 1
PhD Gibson, MD Zhang, PhD Sheu, Mdt Bogdanovich, J. Lindsay, MD Lannfelt, BS Vestling, PhDt Cowburn, D. Gibson (1998)
α‐ketoglutarate dehydrogenase in alzheimer brains bearing the APP670/671 mutationAnnals of Neurology, 44
J. Lustbader, M. Cirilli, Chang Lin, Hong Xu, K. Takuma, Ning Wang, C. Caspersen, X. Chen, S. Pollak, M. Chaney, F. Trinchese, Shumin Liu, F. Gunn-Moore, L. Lue, D. Walker, P. Kuppusamy, Zay Zewier, O. Arancio, D. Stern, S. Yan, Hao-bin Wu
Materials and Methods Som Text Figs. S1 and S2 Table S1 References Abad Directly Links A to Mitochondrial Toxicity in Alzheimer's Disease
C. Wilson, R. Doms, V. Lee (1999)
Intracellular APP processing and A beta production in Alzheimer disease.Journal of neuropathology and experimental neurology, 58 8
M. Mańczak, T. Anekonda, E. Henson, Byung Park, J. Quinn, P. Reddy (2006)
Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression.Human molecular genetics, 15 9
S. Weggen, J. Eriksen, S. Sagi, C. Pietrzik, V. Ozols, A. Fauq, T. Golde, E. Koo (2003)
Evidence That Nonsteroidal Anti-inflammatory Drugs Decrease Amyloid β42 Production by Direct Modulation of γ-Secretase Activity*Journal of Biological Chemistry, 278
V. Sutton, W. O'Brien, G. Clark, J. Kim, R. Wanders (2003)
3-Hydroxy-2-methylbutyryl-CoA dehydrogenase deficiencyJournal of Inherited Metabolic Disease, 26
H. Anandatheerthavarada, G. Biswas, M. Robin, N. Avadhani (2003)
Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cellsThe Journal of Cell Biology, 161
S. Yan, Jin Fu, C. Soto, Xi Chen, Huaijie Zhu, F. Al-Mohanna, K. Collison, Aiping Zhu, E. Stern, T. Saido, M. Tohyama, S. Ogawa, A. Roher, D. Stern (1997)
An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer's diseaseNature, 389
W. Parker, C. Filley, J. Parks (1990)
Cytochrome oxidase deficiency in Alzheimer's diseaseNeurology, 40
P. Moreira, Maria Santos, A. Moreno, A. Rego, C. Oliveira (2002)
Effect of amyloid beta-peptide on permeability transition pore: a comparative study.Journal of neuroscience research, 69 2
D. Cook, M. Forman, Jane Sung, S. Leight, D. Kolson, T. Iwatsubo, V. Lee, R. Doms (1997)
Alzheimer's Aβ(1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cellsNature Medicine, 3
D. Butterfield, M. Perluigi, R. Sultana (2006)
Oxidative Stress in Alzheimer's Disease Brain: New Insights from Redox Proteomics
M. Shearman, C. Ragan, L. Iversen (1994)
Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death.Proceedings of the National Academy of Sciences of the United States of America, 91
Laurent Tillement, L. Lecanu, Wenguo Yao, J. Greeson, V. Papadopoulos (2006)
The spirostenol (22R, 25R)-20alpha-spirost-5-en-3beta-yl hexanoate blocks mitochondrial uptake of Abeta in neuronal cells and prevents Abeta-induced impairment of mitochondrial function.Steroids, 71 8
C. Wild‐Bode, T. Yamazaki, A. Capell, U. Leimer, H. Steiner, Y. Ihara, C. Haass (1997)
Intracellular Generation and Accumulation of Amyloid β-Peptide Terminating at Amino Acid 42*The Journal of Biological Chemistry, 272
S. Sorbi, E. Bird, J. Blass (1983)
Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brainAnnals of Neurology, 13
G. Gibson, K. Sheu, J. Blass (1998)
Abnormalities of mitochondrial enzymes in Alzheimer diseaseJournal of Neural Transmission, 105
M. Munguía, T. Govezensky, R. Martinez, K. Manoutcharian, G. Gevorkian (2006)
Identification of amyloid-beta 1–42 binding protein fragments by screening of a human brain cDNA libraryNeuroscience Letters, 397
H. Yamaguchi, T. Yamazaki, K. Ishiguro, M. Shoji, Y. Nakazato, S. Hirai (2004)
Ultrastructural localization of Alzheimer amyloid β/A4 protein precursor in the cytoplasm of neurons and senile plaque-associated astrocytesActa Neuropathologica, 85
G. Gouras, C. Almeida, R. Takahashi (2005)
Intraneuronal Abeta accumulation and origin of plaques in Alzheimer's disease.Neurobiology of aging, 26 9
R. Takahashi, R. Takahashi, T. Milner, Feng Li, E. Nam, M. Edgar, H. Yamaguchi, M. Beal, Huaxi Xu, P. Greengard, G. Gouras, G. Gouras (2002)
Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology.The American journal of pathology, 161 5
E. Koo, S. Squazzo (1994)
Evidence that production and release of amyloid beta-protein involves the endocytic pathway.The Journal of biological chemistry, 269 26
J. Hardy, D. Selkoe (2009)
The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics
C. Caspersen, Ning Wang, Jun Yao, A. Sosunov, X. Chen, J. Lustbader, Hong Xu, D. Stern, G. McKhann, S. Yan (2005)
Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's diseaseThe FASEB Journal, 19
J. Zschocke, J. Ruiter, J. Brand, M. Lindner, G. Hoffmann, R. Wanders, E. Mayatepek (2000)
Progressive Infantile Neurodegeneration Caused by 2-Methyl-3-Hydroxybutyryl-CoA Dehydrogenase Deficiency: A Novel Inborn Error of Branched-Chain Fatty Acid and Isoleucine MetabolismPediatric Research, 48
A. Burlina, K. Gibson, W. Ruitenbeek, L. Bonafė, M. Bennett (1998)
Profound neurological phenotype in a patient presenting with disordered isoleucine and energy metabolismJournal of Inherited Metabolic Disease, 21
(1995)
Cytochrome c oxidase in Alzheimer ’ s disease brain : purification and characterization
D. Wallace (2005)
A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary MedicineThe FASEB Journal, 20
K. Gibson, T. Burlingame, B. Hogema, C. Jakobs, Ruud Schutgens, D. Millington, Charles Roe, D. Roe, L. Sweetman, Robert Steiner, L. Linck, P. Pohowalla, M. Sacks, D. Kiss, P. Rinaldo, J. Vockley (2000)
2-Methylbutyryl-Coenzyme A Dehydrogenase Deficiency: A New Inborn Error of L-Isoleucine MetabolismPediatric Research, 47
Hyo-Jin Park, Sangsoo Kim, Young-Mo Seong, Kyung-Hee Kim, Hui-Gwan Goo, Eun Yoon, D. Min, Seongman Kang, H. Rhim (2006)
Beta-amyloid precursor protein is a direct cleavage target of HtrA2 serine protease. Implications for the physiological function of HtrA2 in the mitochondria.The Journal of biological chemistry, 281 45
J. Valla, J. Berndt, F. Gonzalez-Lima (2001)
Energy Hypometabolism in Posterior Cingulate Cortex of Alzheimer's Patients: Superficial Laminar Cytochrome Oxidase Associated with Disease DurationThe Journal of Neuroscience, 21
Laurent Tillement, L. Lecanu, Wenguo Yao, J. Greeson, V. Papadopoulos (2006)
The spirostenol (22R, 25R)-20α-spirost-5-en-3β-yl hexanoate blocks mitochondrial uptake of Aβ in neuronal cells and prevents Aβ-induced impairment of mitochondrial functionSteroids, 71
S. Weggen, J. Eriksen, S. Sagi, C. Pietrzik, V. Ozols, A. Fauq, T. Golde, E. Koo (2003)
Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity.The Journal of biological chemistry, 278 34
E. Perry, R. Perry, B. Tomlinson, G. Blessed, P. Gibson (1980)
Coenzyme a-acetylating enzymes in Alzheimer's disease: Possible cholinergic ‘compartment’ of pyruvate dehydrogenaseNeuroscience Letters, 18
P. Moreira, Maria Santos, A. Moreno, A. Rego, C. Oliveira (2002)
Effect of amyloid β‐peptide on permeability transition pore: A comparative studyJournal of Neuroscience Research, 69
G. Gouras, C. Almeida, R. Takahashi (2005)
Intraneuronal Aβ accumulation and origin of plaques in Alzheimer's diseaseNeurobiology of Aging, 26
Jeffrey Greenfield, Julia Tsai, G. Gouras, Bing Hai, G. Thinakaran, Frédéric Checler, S. Sisodia, Paul Greengard, Huaxi Xu (1999)
Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides.Proceedings of the National Academy of Sciences of the United States of America, 96 2
Christina Wilson, R. Doms, V. Lee (1999)
Intracellular APP Processing and Aβ Production in Alzheimer DiseaseJournal of Neuropathology and Experimental Neurology, 58
P. Moreira, M. Santos, A. Moreno, C. Oliveira (2001)
Amyloid beta-peptide promotes permeability transition pore in brain mitochondria.Bioscience reports, 21 6
PJ Tienari, Nobuo Ida, Elina Ikonen, Mikael Simons, A. Weidemann, Gerd Multhaup, C. Masters, Carlos Dotti, K. Beyreuther (1997)
Intracellular and secreted Alzheimer beta-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons.Proceedings of the National Academy of Sciences of the United States of America, 94 8
S. Olpin, R. Pollitt, J. Mcmenamin, N. Manning, G. Besley, J. Ruiter, R. Wanders (2002)
2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency in a 23-year-old manJournal of Inherited Metabolic Disease, 25
C. Caspersen, Ning Wang, Jun Yao, A. Sosunov, X. Chen, J. Lustbader, Hong Xu, D. Stern, G. McKhann, S. Yan (2005)
Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease.FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 19 14
V. Gogvadze, S. Orrenius, B. Zhivotovsky (2006)
Multiple pathways of cytochrome c release from mitochondria in apoptosis.Biochimica et biophysica acta, 1757 5-6
G.Y Wen, S.Y Yang, W. Kaczmarski, X. He, K.S Pappas (2002)
Presence of hydroxysteroid dehydrogenase type 10 in amyloid plaques (APs) of Hsiao’s APP-Sw transgenic mouse brains, but absence in APs of Alzheimer’s disease brainsBrain Research, 954
C. Casley, L. Canevari, John Land, John Clark, M. Sharpe (2001)
β‐Amyloid inhibits integrated mitochondrial respiration and key enzyme activitiesJournal of Neurochemistry, 80
R. Butterworth, A. Besnard (1990)
Thiamine-dependent enzyme changes in temporal cortex of patients with Alzheimer's diseaseMetabolic Brain Disease, 5
T. Hartmann, S. Bieger, Babara Brühl, P. Tienari, N. Ida, D. Allsop, G. Roberts, C. Masters, C. Dotti, K. Unsicker, K. Beyreuther (1997)
Distinct sites of intracellular production for Alzheimer's disease Aβ40/42 amyloid peptidesNature Medicine, 3
S. Yan, J. Fu, C. Soto, X. Chen, He Zhu, F. Al-Mohanna, K. Collison, A. Zhu, E. Stern, T. Saido, M. Tohyama, S. Ogawa, A. Roher, D. Stern (1997)
An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer's disease.Nature, 389 6652
P. Moreira, Maria Santos, A. Moreno, C. Oliveira (2001)
Amyloid β-Peptide Promotes Permeability Transition Pore in Brain MitochondriaBioscience Reports, 21
P. Bubber, V. Haroutunian, G. Fisch, J. Blass, G. Gibson (2005)
Mitochondrial abnormalities in Alzheimer brain: Mechanistic implicationsAnnals of Neurology, 57
Yuli Xie, S. Deng, Zhenzhang Chen, Shidu Yan, D. Landry (2006)
Identification of small-molecule inhibitors of the Abeta-ABAD interaction.Bioorganic & medicinal chemistry letters, 16 17
S. Yan, Yigong Shi, Aiping Zhu, Jin Fu, Huaijie Zhu, Yucui Zhu, Lenneen Gibson, E. Stern, K. Collison, F. Al-Mohanna, S. Ogawa, A. Roher, S. Clarke, D. Stern (1999)
Role of ERAB/l-3-Hydroxyacyl-coenzyme A Dehydrogenase Type II Activity in Aβ-induced Cytotoxicity*The Journal of Biological Chemistry, 274
(1999)
Decreased brain protein levels of cytochrome oxidase subunits in Alzheimer’s disease and in hereditary spinocerebellar ataxia disorders: a nonspecific change
J. Frackowiak, B. Mazur-Kolecka, W. Kaczmarski, Dennis Dickson (2001)
Deposition of Alzheimer’s vascular amyloid-β is associated with decreased expression of brain l-3-hydroxyacyl-coenzyme A dehydrogenase (ERAB)Brain Research, 907
As an important molecule in the pathogenesis of Alzheimer's disease (AD), amyloid-β (Aβ) interferes with multiple aspects of mitochondrial function, including energy metabolism failure, production of reactive oxygen species (ROS) and permeability transition pore formation. Recent studies have demonstrated that Aβ progressively accumulates within mitochondrial matrix, providing a direct link to mitochondrial toxicity. Aβ-binding alcohol dehydrogenase (ABAD) is localized to the mitochondrial matrix and binds to mitochondrial Aβ. Interaction of ABAD with Aβ exaggerates Aβ-mediated mitochondrial and neuronal perturbation, leading to impaired synaptic function, and dysfunctional spatial learning/memory. Thus, blockade of ABAD/Aβ interaction may be a potential therapeutic strategy for AD.
Journal of Alzheimer's Disease – IOS Press
Published: Jan 1, 1
Keywords: Alzheimer's disease; amyloid-β; mitochondria; energy metabolism; ABAD
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.