Access the full text.
Sign up today, get DeepDyve free for 14 days.
(Caroppo A, Leone A, Siciliano P (2021) Deep transfer learning approaches for bleeding detection in endoscopy images. Comput Med Imaging Graph 88:101852)
Caroppo A, Leone A, Siciliano P (2021) Deep transfer learning approaches for bleeding detection in endoscopy images. Comput Med Imaging Graph 88:101852Caroppo A, Leone A, Siciliano P (2021) Deep transfer learning approaches for bleeding detection in endoscopy images. Comput Med Imaging Graph 88:101852, Caroppo A, Leone A, Siciliano P (2021) Deep transfer learning approaches for bleeding detection in endoscopy images. Comput Med Imaging Graph 88:101852
Anastasios Koulaouzidis, D. Iakovidis, A. Karargyris, J. Plevris (2015)
Optimizing lesion detection in small-bowel capsule endoscopy: from present problems to future solutionsExpert Review of Gastroenterology & Hepatology, 9
J. Ioannidis, N. Patsopoulos, E. Evangelou (2007)
Uncertainty in heterogeneity estimates in meta-analysesBMJ : British Medical Journal, 335
ML Giger (2018)
Machine learning in medical imagingJ Am Coll Radiol, 15
Atsuo Yamada, R. Niikura, Keita Otani, Tomonori Aoki, K. Koike (2020)
Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using a deep convolutional neural networkEndoscopy, 53
A. Ebigbo, R. Mendel, A. Probst, J. Manzeneder, Luis Jr, J. Papa, C. Palm, H. Messmann (2018)
Computer-aided diagnosis using deep learning in the evaluation of early oesophageal adenocarcinomaGut, 68
Sen Wang, Yuxiang Xing, Li Zhang, Hewei Gao, Haotong Zhang (2019)
A systematic evaluation and optimization of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using deep convolutional neural networksPhysics in Medicine & Biology, 64
S. Fan, Lanmeng Xu, Yihong Fan, K. Wei, Lihua Li (2018)
Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy imagesPhysics in Medicine & Biology, 63
V. Blanes-Vidal, G. Baatrup, E. Nadimi (2019)
Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learningActa Oncologica, 58
H. Chu, S. Cole (2006)
Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach.Journal of clinical epidemiology, 59 12
J. Xia, T. Xia, Jun Pan, Fei Gao, Shuang Wang, Yangyang Qian, Heng Wang, Jie Zhao, Xi Jiang, Wen‐Bin Zou, Yuan-Chen Wang, W. Zhou, Zhaoshen Li, Z. Liao (2020)
Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy.Gastrointestinal endoscopy
Yann LeCun, Yoshua Bengio, Geoffrey Hinton (2015)
Deep LearningNature, 521
Tao Gan, Shuaicheng Liu, Jin-lin Yang, B. Zeng, Li Yang (2020)
A pilot trial of Convolution Neural Network for automatic retention-monitoring of capsule endoscopes in the stomach and duodenal bulbScientific Reports, 10
O. Niel, P. Bastard (2019)
Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives.American journal of kidney diseases : the official journal of the National Kidney Foundation
D. Chahal, M. Byrne (2020)
A primer on artificial intelligence and its application to endoscopy.Gastrointestinal endoscopy
Xiao Jia, M. Meng (2016)
A deep convolutional neural network for bleeding detection in Wireless Capsule Endoscopy images2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Tomonori Aoki, Atsuo Yamada, K. Aoyama, Hiroaki Saito, A. Tsuboi, Ayako Nakada, R. Niikura, M. Fujishiro, S. Oka, S. Ishihara, T. Matsuda, Shinji Tanaka, K. Koike, T. Tada (2019)
Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network.Gastrointestinal endoscopy, 89 2
G. Iddan, G. Meron, A. Glukhovsky, Paul Swain (2000)
Wireless capsule endoscopyNature, 405
P Whiting, AW Rutjes, JB Reitsma, PM Bossuyt, J Kleijnen (2003)
The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviewsBMC Med Res Methodol, 3
G. Urban, Priya Tripathi, T. Alkayali, Mohit Mittal, F. Jalali, W. Karnes, P. Baldi (2018)
Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy.Gastroenterology, 155 4
T. Hirasawa, K. Aoyama, T. Tanimoto, S. Ishihara, S. Shichijo, Tsuyoshi Ozawa, T. Ohnishi, M. Fujishiro, K. Matsuo, J. Fujisaki, T. Tada (2018)
Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic imagesGastric Cancer, 21
B. Mohan, Shahab Khan, L. Kassab, S. Ponnada, S. Chandan, T. Ali, P. Dulai, D. Adler, G. Kochhar (2020)
High pooled performance of convolutional neural networks in computer-aided diagnosis of GI ulcers and/or hemorrhage on wireless capsule endoscopy images: a systematic review and meta-analysis.Gastrointestinal endoscopy
(2022)
Machine Learning in Medical Imaging - 13th International Workshop, MLMI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings, 13583
Sen Wang, Yuxiang Xing, Li Zhang, Hewei Gao, Haotong Zhang (2019)
Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and OptimizationComputational and Mathematical Methods in Medicine, 2019
G. Chartrand, P. Cheng, Eugene Vorontsov, M. Drozdzal, S. Turcotte, C. Pal, S. Kadoury, A. Tang (2017)
Deep Learning: A Primer for Radiologists.Radiographics : a review publication of the Radiological Society of North America, Inc, 37 7
Abdul Majid, M. Khan, Mussarat Yasmin, A. Rehman, Abdullah Yousafzai, U. Tariq (2020)
Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selectionMicroscopy Research and Technique, 83
Kenji Suzuki, Pingkun Yan, Fei Wang, D. Shen (2012)
Machine Learning in Medical ImagingInternational Journal of Biomedical Imaging, 2012
S. Aractingi, G. Pellacani (2019)
Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology?European Journal of Dermatology, 29
H. Houwelingen, K. Zwinderman, T. Stijnen (1993)
A bivariate approach to meta-analysis.Statistics in medicine, 12 24
G. Guyatt, A. Oxman, G. Vist, R. Kunz, Y. Falck-Ytter, P. Alonso-Coello, H. Schünemann (2008)
GRADE: an emerging consensus on rating quality of evidence and strength of recommendationsBMJ : British Medical Journal, 336
E. Lim, J. Wang, Zhao Wang, T. Tillo, Ka Man, T. NanZhang (2020)
Wireless Capsule EndoscopyGeriatric Gastroenterology
J. Choi, Bumshik Lee (2019)
Ensemble of Deep Convolutional Neural Networks With Gabor Face Representations for Face RecognitionIEEE Transactions on Image Processing, 29
M. McAlindon, Hey-Long Ching, D. Yung, R. Sidhu, Anastasios Koulaouzidis (2016)
Capsule endoscopy of the small bowel.Annals of translational medicine, 4 19
A. Histace, X. Dray, R. Leenhardt, M. Souchaud, Guy Houist, Jean-Philippe Mouel, J. Saurin, F. Cholet, G. Rahmi, C. Léandri (2020)
A neural network-based algorithm for assessing the cleanliness of small bowel during capsule endoscopyEndoscopy, 53
D. Mishkin, R. Chuttani, J. Croffie, J. Disario, Julia Liu, R. Shah, L. Somogyi, W. Tierney, L. Song, B. Petersen (2006)
ASGE Technology Status Evaluation Report: wireless capsule endoscopy.Gastrointestinal endoscopy, 63 4
Anastasios Koulaouzidis, K. Dabos (2013)
Looking forwards: not necessarily the best in capsule endoscopy?Annals of Gastroenterology : Quarterly Publication of the Hellenic Society of Gastroenterology, 26
M. Page, D. Moher, P. Bossuyt, I. Boutron, T. Hoffmann, C. Mulrow, Larissa Shamseer, J. Tetzlaff, E. Akl, S. Brennan, R. Chou, Julie Glanville, J. Grimshaw, A. Hrõbjartsson, M. Lalu, Tianjing Li, E. Loder, E. Mayo-Wilson, Steve McDonald, L. McGuinness, L. Stewart, James Thomas, A. Tricco, V. Welch, P. Whiting, J. McKenzie (2020)
PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviewsThe BMJ, 372
R. Yamashita, M. Nishio, R. Do, K. Togashi (2018)
Convolutional neural networks: an overview and application in radiologyInsights into Imaging, 9
Xiao Jia, M. Meng (2017)
Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Tomonori Aoki, Atsuo Yamada, Yusuke Kato, Hiroaki Saito, A. Tsuboi, Ayako Nakada, R. Niikura, M. Fujishiro, S. Oka, S. Ishihara, T. Matsuda, M. Nakahori, Shinji Tanaka, K. Koike, T. Tada (2019)
Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural networkJournal of Gastroenterology and Hepatology, 35
C. Berre, W. Sandborn, Sabeur Aridhi, M. Devignes, L. Fournier, Malika Smaïl-Tabbone, S. Danese, L. Peyrin-Biroulet (2019)
Application of Artificial Intelligence to Gastroenterology and Hepatology.Gastroenterology
R. Trasolini, M. Byrne (2020)
Artificial intelligence and deep learning for small bowel capsule endoscopyDigestive Endoscopy, 33
E. Klang (2018)
Deep learning and medical imaging.Journal of thoracic disease, 10 3
(Otani K, Nakada A, Kurose Y, Niikura R, Yamada A, Aoki T, Nakanishi H, Doyama H, Hasatani K, Sumiyoshi T, Kitsuregawa M, Harada T, Koike K (2020) Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network. Endoscopy 52:786–791.)
Otani K, Nakada A, Kurose Y, Niikura R, Yamada A, Aoki T, Nakanishi H, Doyama H, Hasatani K, Sumiyoshi T, Kitsuregawa M, Harada T, Koike K (2020) Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network. Endoscopy 52:786–791.Otani K, Nakada A, Kurose Y, Niikura R, Yamada A, Aoki T, Nakanishi H, Doyama H, Hasatani K, Sumiyoshi T, Kitsuregawa M, Harada T, Koike K (2020) Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network. Endoscopy 52:786–791., Otani K, Nakada A, Kurose Y, Niikura R, Yamada A, Aoki T, Nakanishi H, Doyama H, Hasatani K, Sumiyoshi T, Kitsuregawa M, Harada T, Koike K (2020) Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network. Endoscopy 52:786–791.
R. Noorda, A. Nevárez, Adrián Colomer, V. Beltrán, V. Naranjo (2020)
Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architectureScientific Reports, 10
Y. Niv (2008)
Efficiency of bowel preparation for capsule endoscopy examination: a meta-analysis.World journal of gastroenterology, 14 9
M. Pennazio, C. Spada, R. Eliakim, M. Keuchel, A. May, C. Mulder, E. Rondonotti, S. Adler, J. Albert, P. Baltes, F. Barbaro, C. Cellier, J. Charton, M. Delvaux, E. Despott, D. Domagk, A. Klein, M. McAlindon, B. Rosa, G. Rowse, D. Sanders, J. Saurin, R. Sidhu, J. Dumonceau, C. Hassan, I. Gralnek (2015)
Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Clinical GuidelineEndoscopy, 47
E. Klang, Y. Barash, R. Margalit, S. Soffer, Orit Shimon, A. Albshesh, S. Ben-Horin, M. Amitai, R. Eliakim, U. Kopylov (2019)
Deep learning algorithms for automated detection of Crohn's disease ulcers by video capsule endoscopy.Gastrointestinal endoscopy
Zhen Ding, Huiying Shi, Hao-Hai Zhang, Lingjun Meng, Mengke Fan, Chaoqun Han, Kun Zhang, Fanhua Ming, Xiao-ping Xie, Hao Liu, Jun Liu, Rong Lin, X. Hou (2019)
Gastroenterologist-level Identification of Small Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-learning Model.Gastroenterology
J. Deeks, P. Macaskill, L. Irwig (2005)
The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed.Journal of clinical epidemiology, 58 9
(2006)
BMC Medical Research Methodology BioMed Central
A. Hosny, C. Parmar, John Quackenbush, L. Schwartz, H. Aerts (2018)
Artificial intelligence in radiologyNature Reviews Cancer, 18
(2016)
Courville A (2016
(Aoki T, Yamada A, Kato Y, Saito H, Tsuboi A, Nakada A, Niikura R, Fujishiro M, Oka S, Ishihara S, Matsuda T, Nakahori M, Tanaka S, Koike K, Tada T (2020) Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol 35:1196–1200)
Aoki T, Yamada A, Kato Y, Saito H, Tsuboi A, Nakada A, Niikura R, Fujishiro M, Oka S, Ishihara S, Matsuda T, Nakahori M, Tanaka S, Koike K, Tada T (2020) Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol 35:1196–1200Aoki T, Yamada A, Kato Y, Saito H, Tsuboi A, Nakada A, Niikura R, Fujishiro M, Oka S, Ishihara S, Matsuda T, Nakahori M, Tanaka S, Koike K, Tada T (2020) Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol 35:1196–1200, Aoki T, Yamada A, Kato Y, Saito H, Tsuboi A, Nakada A, Niikura R, Fujishiro M, Oka S, Ishihara S, Matsuda T, Nakahori M, Tanaka S, Koike K, Tada T (2020) Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol 35:1196–1200
Yixuan Yuan, M. Meng (2017)
Deep learning for polyp recognition in wireless capsule endoscopy imagesMedical Physics, 44
A. Hoyer, O. Kuss (2018)
Meta-analysis for the comparison of two diagnostic tests to a common gold standard: A generalized linear mixed model approachStatistical Methods in Medical Research, 27
B. Erickson, P. Korfiatis, Z. Akkus, T. Kline, Kenneth Philbrick (2017)
Toolkits and Libraries for Deep LearningJournal of Digital Imaging, 30
(Yamada A, Niikura R, Otani K, Aoki T, Koike K (2020) Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using a deep convolutional neural network. Endoscopy. )
Yamada A, Niikura R, Otani K, Aoki T, Koike K (2020) Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using a deep convolutional neural network. Endoscopy.Yamada A, Niikura R, Otani K, Aoki T, Koike K (2020) Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using a deep convolutional neural network. Endoscopy. , Yamada A, Niikura R, Otani K, Aoki T, Koike K (2020) Automatic detection of colorectal neoplasia in wireless colon capsule endoscopic images using a deep convolutional neural network. Endoscopy.
S. Soffer, E. Klang, Orit Shimon, Noy Nachmias, R. Eliakim, S. Ben-Horin, U. Kopylov, Y. Barash (2020)
Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis.Gastrointestinal endoscopy
Keita Otani, Ayako Nakada, Y. Kurose, R. Niikura, Atsuo Yamada, Tomonori Aoki, H. Nakanishi, H. Doyama, K. Hasatani, T. Sumiyoshi, M. Kitsuregawa, T. Harada, K. Koike (2020)
Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural networkEndoscopy, 52
Z. Liao, R. Gao, Can Xu, Zhaoshen Li (2010)
Indications and detection, completion, and retention rates of small-bowel capsule endoscopy: a systematic review.Gastrointestinal endoscopy, 71 2
Andrea Caroppo, A. Leone, P. Siciliano (2021)
Deep transfer learning approaches for bleeding detection in endoscopy imagesComputerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, 88
G. Doherty, A. Moss, A. Cheifetz (2011)
Capsule endoscopy for small-bowel evaluation in Crohn's disease.Gastrointestinal endoscopy, 74 1
R. Enns, L. Hookey, D. Armstrong, C. Bernstein, S. Heitman, C. Teshima, G. Leontiadis, F. Tse, D. Sadowski (2017)
Clinical Practice Guidelines for the Use of Video Capsule Endoscopy.Gastroenterology, 152 3
C. Spada, C. Hassan, D. Bellini, D. Burling, G. Cappello, C. Carretero, E. Dekker, R. Eliakim, M. Haan, M. Kaminski, Anastasios Koulaouzidis, A. Laghi, P. Lefere, T. Mang, S. Milluzzo, M. Morrin, D. McNamara, E. Neri, S. Pecere, M. Pioche, A. Plumb, E. Rondonotti, M. Spaander, S. Taylor, I. Fernández-Urién, J. Hooft, J. Stoker, D. Regge (2020)
Imaging alternatives to colonoscopy: CT colonography and colon capsule. European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastrointestinal and Abdominal Radiology (ESGAR) Guideline – Update 2020European Radiology, 31
BackgroundWireless capsule endoscopy (WCE) is considered to be a powerful instrument for the diagnosis of intestine diseases. Convolution neural network (CNN) is a type of artificial intelligence that has the potential to assist the detection of WCE images. We aimed to perform a systematic review of the current research progress to the CNN application in WCE.MethodsA search in PubMed, SinoMed, and Web of Science was conducted to collect all original publications about CNN implementation in WCE. Assessment of the risk of bias was performed by Quality Assessment of Diagnostic Accuracy Studies-2 risk list. Pooled sensitivity and specificity were calculated by an exact binominal rendition of the bivariate mixed-effects regression model. I2 was used for the evaluation of heterogeneity.Results16 articles with 23 independent studies were included. CNN application to WCE was divided into detection on erosion/ulcer, gastrointestinal bleeding (GI bleeding), and polyps/cancer. The pooled sensitivity of CNN for erosion/ulcer is 0.96 [95% CI 0.91, 0.98], for GI bleeding is 0.97 (95% CI 0.93–0.99), and for polyps/cancer is 0.97 (95% CI 0.82–0.99). The corresponding specificity of CNN for erosion/ulcer is 0.97 (95% CI 0.93–0.99), for GI bleeding is 1.00 (95% CI 0.99–1.00), and for polyps/cancer is 0.98 (95% CI 0.92–0.99).ConclusionBased on our meta-analysis, CNN-dependent diagnosis of erosion/ulcer, GI bleeding, and polyps/cancer approached a high-level performance because of its high sensitivity and specificity. Therefore, future perspective, CNN has the potential to become an important assistant for the diagnosis of WCE.
Surgical Endoscopy – Springer Journals
Published: Jan 1, 2022
Keywords: Deep learning; Convolutional neural network; Capsule endoscopy
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.