Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Knoll, C. Clason, K. Bredies, M. Uecker, R. Stollberger (2012)
Parallel imaging with nonlinear reconstruction using variational penaltiesMagnetic Resonance in Medicine, 67
Junzhou Huang, Shaoting Zhang, Hongsheng Li, Dimitris Metaxas (2011)
Composite splitting algorithms for convex optimizationComput. Vis. Image Underst., 115
L. He, L. Carin (2009)
Exploiting Structure in Wavelet-Based Bayesian Compressive SensingIEEE Transactions on Signal Processing, 57
K. Bredies, K. Kunisch, T. Pock (2010)
Total Generalized VariationSIAM J. Imaging Sci., 3
A. Beck, M. Teboulle (2009)
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse ProblemsSIAM J. Imaging Sci., 2
Jin Jin, Feng Liu, Z. Zuo, R. Xue, Mingyan Li, Yu Li, E. Weber, S. Crozier (2012)
Inverse field-based approach for simultaneous B₁ mapping at high fields - a phantom based study.Journal of magnetic resonance, 217
M. Bydder, D. Larkman, J. Hajnal (2002)
Combination of signals from array coils using image‐based estimation of coil sensitivity profilesMagnetic Resonance in Medicine, 47
J. Velikina, A. Samsonov (2015)
Reconstruction of dynamic image series from undersampled MRI data using data‐driven model consistency condition (MOCCO)Magnetic Resonance in Medicine, 74
L. He, Haojun Chen, L. Carin (2010)
Tree-Structured Compressive Sensing With Variational Bayesian AnalysisIEEE Signal Processing Letters, 17
F. Larmande, J. Ponssard (1994)
ECOLE POLYTECHNIQUE
Guang Yang, Simiao Yu, Hao Dong, G. Slabaugh, P. Dragotti, Xujiong Ye, Fangde Liu, S. Arridge, J. Keegan, Yike Guo, D. Firmin (2018)
DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI ReconstructionIEEE Transactions on Medical Imaging, 37
Yajun Ma, Wentao Liu, Xin Tang, Jia-Hong Gao (2015)
Improved SENSE imaging using accurate coil sensitivity maps generated by a global magnitude‐phase fitting methodMagnetic Resonance in Medicine, 74
R. Liu, Lin Shi, S. Yu, Defeng Wang (2015)
Box-constrained second-order total generalized variation minimization with a combined L1,2 data-fidelity term for image reconstructionJournal of Electronic Imaging, 24
Sohyun Han, J. Paulsen, G. Zhu, Youngkyu Song, Song-I Chun, G. Cho, E. Ackerstaff, J. Koutcher, Hyungjoon Cho (2012)
Temporal/spatial resolution improvement of in vivo DCE-MRI with compressed sensing-optimized FLASH.Magnetic resonance imaging, 30 6
Chen Chen, Junzhou Huang, L. Axel (2012)
Accelerated Parallel Magnetic Resonance Imaging with Combined Gradient and Wavelet Sparsity
Zongying Lai, X. Qu, Yunsong Liu, D. Guo, Jing Ye, Zhifang Zhan, Zhong Chen (2016)
Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transformMedical image analysis, 27
G. Xie, Yibiao Song, C. Shi, Xiang Feng, Hairong Zheng, D. Weng, B. Qiu, Xin Liu (2014)
Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images.Magnetic resonance imaging, 32 2
F. Ulaby (1998)
Fundamentals of Applied Electromagnetics, 1999 Edition
Yi Guo, R. Lebel, Yinghua Zhu, S. Lingala, M. Shiroishi, M. Law, K. Nayak (2016)
High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.Medical physics, 43 5
Ozan Sayin, H. Saybasili, M. Zviman, M. Griswold, H. Halperin, N. Seiberlich, D. Herzka (2017)
Real‐time free‐breathing cardiac imaging with self‐calibrated through‐time radial GRAPPAMagnetic Resonance in Medicine, 77
D. Liang, Bo Liu, Jiunjie Wang, L. Ying (2009)
Accelerating SENSE using compressed sensingMagnetic Resonance in Medicine, 62
Urs Niesen, D. Shah, G. Wornell (2007)
Adaptive Alternating Minimization AlgorithmsIEEE Transactions on Information Theory, 55
Bende Ning, X. Qu, D. Guo, Changwei Hu, Zhong Chen (2013)
Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization.Magnetic resonance imaging, 31 9
L. Rudin, S. Osher, E. Fatemi (1992)
Nonlinear total variation based noise removal algorithmsPhysica D: Nonlinear Phenomena, 60
M. Lustig, D. Donoho, J. Pauly (2007)
Sparse MRI: The application of compressed sensing for rapid MR imagingMagnetic Resonance in Medicine, 58
Zhou Wang, A. Bovik, H. Sheikh, Eero Simoncelli (2004)
Image quality assessment: from error visibility to structural similarityIEEE Transactions on Image Processing, 13
Zhen Feng, Feng Liu, M. Jiang, S. Crozier, He Guo, Yuxin Wang (2014)
Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.Magnetic resonance imaging, 32 7
S. Som, Philip Schniter (2010)
Compressive Imaging Using Approximate Message Passing and a Markov-Tree PriorIEEE Transactions on Signal Processing, 60
J. Woodworth, R. Chartrand (2015)
Compressed sensing recovery via nonconvex shrinkage penaltiesInverse Problems, 32
K. Pruessmann, M. Weiger, P. Börnert, P. Boesiger (2001)
Advances in sensitivity encoding with arbitrary k‐space trajectoriesMagnetic Resonance in Medicine, 46
Cheng Chen, Junzhou Huang (2014)
The benefit of tree sparsity in accelerated MRIMedical image analysis, 18 6
R. Chartrand (2009)
Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
E. Candès, J. Romberg, T. Tao (2004)
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency informationIEEE Transactions on Information Theory, 52
Il Chun, B. Adcock, T. Talavage (2016)
Efficient Compressed Sensing SENSE pMRI Reconstruction With Joint Sparsity PromotionIEEE Transactions on Medical Imaging, 35
J. Manjón, P. Coupé, A. Buades, D. Collins, M. Robles, J. Manjón (2012)
New methods for MRI denoising based on sparseness and self-similarityMedical image analysis, 16 1
L. Ying, J. Sheng (2007)
Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)Magnetic Resonance in Medicine, 57
M. Schloegl, M. Holler, A. Schwarzl, K. Bredies, R. Stollberger (2017)
Infimal convolution of total generalized variation functionals for dynamic MRIMagnetic Resonance in Medicine, 78
Fei Xu, Jingqi Han, Yongli Wang, Ming Chen, Yongyong Chen, G. He, Yunhong Hu (2017)
Dynamic Magnetic Resonance Imaging via Nonconvex Low-Rank Matrix ApproximationIEEE Access, 5
F. Liu, Y. Duan, B. Peterson, A. Kangarlu (2012)
Compressed sensing MRI combined with SENSE in partial k-spacePhysics in Medicine and Biology, 57
Yihang Zhou, Yuchou Chang, D. Liang, L. Ying (2012)
k-t CSPI: A dynamic MRI reconstruction framework for combining compressed sensing and parallel imaging2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)
Jin Jin, Feng Liu, E. Weber, Yu Li, S. Crozier (2010)
An electromagnetic reverse method of coil sensitivity mapping for parallel MRI - theoretical framework.Journal of magnetic resonance, 207 1
Dongwook Lee, Jaejun Yoo, S. Tak, J. Ye (2018)
Deep Residual Learning for Accelerated MRI Using Magnitude and Phase NetworksIEEE Transactions on Biomedical Engineering, 65
Junzhou Huang, Shaoting Zhang, Dimitris Metaxas (2011)
Efficient MR image reconstruction for compressed MR imagingMedical image analysis, 15 5
M. Griswold, P. Jakob, R. Heidemann, M. Nittka, V. Jellús, Jianmin Wang, B. Kiefer, A. Haase (2002)
Generalized autocalibrating partially parallel acquisitions (GRAPPA)Magnetic Resonance in Medicine, 47
Chen Chen, Junzhou Huang (2014)
Exploiting the wavelet structure in compressed sensing MRI.Magnetic resonance imaging, 32 10
K. Hammernik, Teresa Klatzer, Erich Kobler, M. Recht, D. Sodickson, T. Pock, F. Knoll (2017)
Learning a variational network for reconstruction of accelerated MRI dataMagnetic Resonance in Medicine, 79
B. Liu, F. Sebert, Y. Zou, L. Ying (2007)
SparseSENSE: Randomly-Sampled Parallel Imaging using Compressed Sensing
Suhyung Park, Jaeseok Park (2014)
Compressed sensing MRI exploiting complementary dual decompositionMedical image analysis, 18 3
R. Chartrand (2007)
Nonconvex Compressed Sensing and Error Correction2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07, 3
Ge Wang (2016)
A Perspective on Deep ImagingIEEE Access, 4
R. Chartrand (2007)
Exact Reconstruction of Sparse Signals via Nonconvex MinimizationIEEE Signal Processing Letters, 14
K. Jin, Dongwook Lee, J. Ye (2015)
A General Framework for Compressed Sensing and Parallel MRI Using Annihilating Filter Based Low-Rank Hankel MatrixIEEE Transactions on Computational Imaging, 2
D. Liang, Haifeng Wang, Yuchou Chang, L. Ying (2011)
Sensitivity encoding reconstruction with nonlocal total variation regularizationMagnetic Resonance in Medicine, 65
B. Pichler, M. Judenhofer, C. Pfannenberg (2008)
Multimodal imaging approaches: PET/CT and PET/MRI.Handbook of experimental pharmacology, 185 Pt 1
G. Adluru, S. Awate, T. Tasdizen, Ross Whitaker, E. DiBella (2007)
Temporally constrained reconstruction of dynamic cardiac perfusion MRIMagnetic Resonance in Medicine, 57
J. Trzasko, A. Manduca (2009)
Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic $\ell_{0}$ -MinimizationIEEE Transactions on Medical Imaging, 28
Bing Wu, R. Millane, R. Watts, P. Bones (2011)
Prior estimate‐based compressed sensing in parallel MRIMagnetic Resonance in Medicine, 65
K. Pruessmann, M. Weiger, M. Scheidegger, P. Boesiger (1999)
SENSE: Sensitivity encoding for fast MRIMagnetic Resonance in Medicine, 42
M. Griswold, P. Jakob, M. Nittka, J. Goldfarb, A. Haase (2000)
Partially parallel imaging with localized sensitivities (PILS)Magnetic Resonance in Medicine, 44
Yilun Wang, Junfeng Yang, W. Yin, Yin Zhang (2008)
A New Alternating Minimization Algorithm for Total Variation Image ReconstructionSIAM J. Imaging Sci., 1
Gitta Kutyniok (2012)
Compressed Sensing
Stamatios Lefkimmiatis, S. Osher (2015)
Nonlocal Structure Tensor Functionals for Image RegularizationIEEE Transactions on Computational Imaging, 1
Bin Dong, Yong Zhang (2013)
An Efficient Algorithm for ℓ0 Minimization in Wavelet Frame Based Image RestorationJournal of Scientific Computing, 54
M. Lustig, D. Donoho, Juan Santos, J. Pauly (2008)
Compressed Sensing MRIIEEE Signal Processing Magazine, 25
F. Lin, Ying-Jui Chen, J. Belliveau, L. Wald (2003)
A wavelet‐based approximation of surface coil sensitivity profiles for correction of image intensity inhomogeneity and parallel imaging reconstructionHuman Brain Mapping, 19
R. Saab, R. Chartrand, Ö. Yilmaz (2008)
Stable sparse approximations via nonconvex optimization2008 IEEE International Conference on Acoustics, Speech and Signal Processing
Chang Hyun, Hwa Kim, S. Lee, S. Lee, J.K. Seo (2017)
Deep learning for undersampled MRI reconstructionPhysics in Medicine & Biology, 63
F. Knoll, K. Bredies, T. Pock, R. Stollberger (2011)
Second order total generalized variation (TGV) for MRIMagnetic Resonance in Medicine, 65
A. Majumdar, R. Ward, T. Aboulnasr (2013)
Non-convex algorithm for sparse and low-rank recovery: application to dynamic MRI reconstruction.Magnetic resonance imaging, 31 3
Tran Quan, Thanh Nguyen-Duc, W. Jeong (2017)
Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic LossIEEE Transactions on Medical Imaging, 37
D. Sodickson, W. Manning (1997)
Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arraysMagnetic Resonance in Medicine, 38
A. Majumdar, R. Ward (2011)
An algorithm for sparse MRI reconstruction by Schatten p-norm minimization.Magnetic resonance imaging, 29 3
Weihong Guo, Jing Qin, W. Yin (2014)
A New Detail-Preserving Regularization SchemeSIAM J. Imaging Sci., 7
IEEE Access – Unpaywall
Published: Jan 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.